
©Pollere, Inc. www.pollere.net

Lessons Learned Building a Secure
Network Measurement Framework

using Basic NDN

Kathleen Nichols
ACM ICN 2019

September 26, 2019

Pollere, INC.
network

analysis &

architecture,

performance

http://www.pollere.net

Talk in a Nutshell

• This is the opposite of “ICN Protocol Enhancements”:
• the basic NDN protocol provides a complete network layer
• enhancements belong above that layer

• While developing NDN Distributed Network Measurement
Protocol (DNMP), observed that:

• application is well-suited to NDN features: information-centric with fine-
grained role-based security

• implementing with NDN is more difficult than it could be
• significant bugs in NFD distribution, particularly in multicast handling
• NDN lacks library of useful communications models
• it’s difficult to integrate application trust model with NDN codebase

• To address the issues, DNMP was co-developed with a few new
tools and some NFD bug patches

�2

Modules that work within existing architecture, not new layers or concepts that create a straight-jacket for applications

DNMP is an infrastructure or system application on top of NDN with user-facing applications of its own

This slide is the very short form of the talk. The long form starts with the basic structure of DNMP

�3

DNMP structure: applications and interactions

Client
Network
Observer
Daemon

Audit Logger

Use NDN-based information transport to get valid messages to applications

get
measurement
at target result result filtered

messages
store
result

result
stored

get
measurement

at target

•Client: solicits measurements, role-based identity, ephemeral
•NOD: collects measurements, device-based identity, persistent
•Audit: captures and saves messages in case later audit is
needed (check “who did what to which”)

•Logger: provides storage for asynchronous measurements

Only Clients and NODs are required for a working implementation

DNMP is an NDN application; there are currently four types of DNMP applications. Two derive from some earlier NIST work in this area, are necessary, and have been implemented.

The other two are to make the overall measurement architecture more useful and are still in early stages.

Next step: consider the communication model needed

�4

• Client measurement requests can be one-to-many
• Replies from NODs can be many-to-one
• ‘Audit’ adds additional listener(s) → many-to-many

Suggests a publish-subscribe communications model
• publishers have no knowledge of subscribers and vice-versa
• topic-based (more general than producer-based)
• applications generally both publish and subscribe

- clients publish to command topic to request measurements
and subscribe to associated reply topic

- NODs subscribe to command and publish to reply topics

DNMP communication model

Audits could subscribe to command and/or reply, but most likely to follow command for any later forensic audit and (possibly) filter on certain subtopics

DNMP applications view this communications model through an API to the modules that implement it

�5

DNMP application view of communication model
• Client calls pass probe, arguments, target

• probe: the measurement type (e.g. NFD General Status)
• arguments: makes more specific (e.g. count of Interests)
• target: location of measurement (e.g. local, all, ID)

•Clients callbacks pass result
•NOD callbacks pass specific measurement request,
including probe and arguments

•NOD calls pass the specific measurement request (to
identify result) and its result

Match this model to existing codebase
•???
•Shortage of libraries and examples

Further, modularization of applications and information transport generally lacking though there are some more recent attempts to address parts of this, we found them to be more akin to a straightjacket for applications (and insufficiently information-centric and not
integrated with security)

security: run-time validation, signing, and publication construction using the
DNMP trust schema
shim: object that provides application specificity using library or template
functional modules including publication expiration, API, sending priority and
delivery QoS (e.g. at most once, at least once)

=> wanted a simple pub/sub sync, but there wasn’t one (there is now)

�6

NDN
Forwarder
Daemon

Applications
(no site-
specific

information)
Interests/
Data &
Registrations

sync: set synchronization for pub/sub
security: validation, signing
shim: application specifics: upcalls,
timing, lifetimes, callbacks, API, QoS
site-specifics: local network prefix
and keys

API

bespoke transport

Decompose: communications models are implemented by a bespoke
transport containing the sync and application-specific functions

bespoke transport is just a name for the collection of modules that implement
an NDN user-space information transport, not a new architectural feature

Divide and conquer: with a modular roadmap, start to fill it in

syncps: A Lightweight Basic Pub/Sub Sync

• Available syncs not topic-based nor fit to ephemeral messages
• syncps is MQTT-like but brokerless and broadcast-efficient

• As in MQTT, application-specific enhancements like delivery QoS and
storage are implemented on top of syncps

• upcalls are used to obtain application-specific information (e.g. lifetimes,
priority) and actions (e.g. publication validation, expiry)

• syncps sends Interests giving the target, topic and an IBLT identifying its
(unexpired) publications

• receivers respond with new (not in IBLT) publications (NDN Data)
packaged into a syncps Data ordered by priority

• DNMP’s trust schema applied to publications, not the outer Data
• publications have a limited lifetime to bound state needed to prevent

replay. Implemented via timestamps requiring approximate time sync
(defaults to1 sec. jitter tolerance)

• broadcast media (e.g. a wifi network) makes this efficient

�7

Just because Data is unique does not mean that it has to live forever

Storage, like transport, has application specifics that mean making it transparent to applications is problematic.

syncps Data uses SHA256, initialized in the syncps constructor with the line:
 m_signingInfo(ndn::security::SigningInfo::SIGNER_TYPE_SHA256),
Can be overridden by a shim via the syncps methods setSigningInfo() and setValidator() which set the NDN Interest/Data validation policy.

Specify DNMP Publications

�8

cpub = <domain>/<target>/command/<role>/<pType>/<pArgs>/<origin>/<cTS>

rpub = <domain>/<target>/reply/<cmdID>/<nodId><rTS>

• Request/response interaction of clients and NODs is akin to ephemeral RPC
• Implement this with two publication topics, command and reply
• Clients publish cpub in command topic and NODs publish rpub in reply topic

Notes:
• domain expands to <root>/dnmp where the root or networkID is site-specific
• cmdID: exact copy of command's last five groups, i.e., reply takes Name of command

that initiated it, replaces command with reply and appends its own two groups
• timestamps (xTS): UTC nanosecond timestamps give publication creation time
• target specifies where the directive is performed, e.g. all, local, or unique NOD id
• pType: measurement probe descriptive name, pArgs makes measurement more specific
• more detail in the paper, github code (slight changes from paper)

Name format, components grouped by function (bold indicates a literal):

Note this complex name is only for DNMP publications, not necessary to expose to the DNMP applications.

DNMP Trust Rules for cpub and rpub

�9

cpub
<domain>/<target>/command/<role>/<pType>/<pArgs>/<origin>/<cTS>

where: domain = <root>/dnmp

requires:
roleCert = <domain>/<role>/<keyinfo>
dnmpCert = <domain>/<keyinfo>

has signing chain (“<=” denotes “is signed by”):
cpub <= roleCert <= dnmpCert <= netCert

rpub
<cpub command => reply>/<nodId>/<rTS>

where: “=>” denotes “is replaced by”
requires:

nodCert = <domain>/nod/<nodID>/<keyinfo>
devCert = <root>/device/<devID>/<keyinfo>
configCert = <root>/config/<configID>/<keyinfo>

has signing chain:
rpub <= nodCert <= deviceCert <= configCert <= netCert

Should mean the hard work is done, but…

• Library’s validator language doesn’t reflect the human
specification

• NDN library doesn’t produce a signable trust schema,
thus can’t trust the trust schema!

• At best, existing validator only checks some components,
some Names and can’t check signing chain as a unit

• But trust rules define Names and signing relationships
and should be usable to:
• check soundness of the trust schema
• construct packets and automatically choose signing keys
• validate entire signing chain, syntax and authorizations

�10

A New Approach: Versatile Security Toolkit (VerSec)

• A language and compiler for trust rules that checks entire schema,
then outputs it in a signable compact binary form as key

• Run-time security object, schemer, for validation and Data name
construction, also allows applications to reference Name components
by names!

�11

Network
Key

Trust
Schema

Role
Key

Device
Key

NODClient command/nod/…
Publication

Sig
ns

Verifies &
Constructs

(the trust anchor)

Example: VerSec compiler input for DNMP

• 26 lines of code, heavily commented, not unlike the rule specifications
• working proof-of-concept handles DNMP, existing NDN trust schema uses,

other ICN applications
�12

NDN trust schema to validate command and reply publications
for DNMP v0.5.0

root key (trust anchor) name
network = myhouse

schema describes items in the DNMP namespace of this network
domain = <network>/dnmp

how various entities are identified in the schema

user = user/<Id> # an authorized user
operator = operator/<opId> # an authorized operator
configurator = config/<confId> # an authorized device configurer
device = device/<devId> # authorized, configured, device
nod = nod/<nodId> # authorized nod on some device

schema for legal commands and related definitions
operators can probe any target.
users can probe their local nod or ping any target.
'cmd_user' is listed first in the definition of 'cmd' so a
'user' signing key is preferred if the command allows it and
both 'user' & 'operator' keys are available (i.e., force the
"least privilege" choice).
target = nod/(local|all|<!nodId>) # possible command targets
probe = <!pType>/<!pArgs> # required components of

 # ’probe' command

uprobes = Pinger/<!pArgs> # probe(s) a user can issue
 # to any nod

uCmd = nod/local/command/<Id>/<probe> |\
 <target>/command/<Id>/<uprobes>
oCmd = <target>/command/<opId>/<probe>
cmd = <domain>/(<uCmd> | <oCmd>)/<or>/<ts>

or = <!origin $sysId> # command's origin
ts = <!cTS $tStamp> # command's timestamp

schema for nod replies to commands.
The initial prefix of a reply is the name of the command that
solicited it except the literal component 'command' is
replaced with 'reply'. The following line constructs legal
reply prefixes by doing this substitution on all legal command
definitions (cmd = ...) above.
The result is marked "don't verify" since:
- the command was verified on arrival to the NOD
- command's originator knows the rule constructing reply
name and is subscribed to this exact result.
Final two components of reply identify the replying NOD (this
component *is* verified) and the time the reply was generated.
reply = <!cmd: command => reply>/<nodId>/<!rTS $tStamp>

signing certificate name schemas & related definitions

role = <user> | <operator> # roles that can sign commands
keyinfo = KEY/_/_/_ # standard NDN key name suffix
 # (this schema ignores last 3

 # components)

netCert = <network>/<keyinfo> # trust anchor
configCert = <network>/<configurator>/<keyinfo>
deviceCert = <network>/<device>/<keyinfo>
dnmpCert = <domain>/<keyinfo>
roleCert = <domain>/<role>/<keyinfo>
nodCert = <domain>/nod/<nodId>/<keyinfo>

command Publication signing chain
cmd <= roleCert <= dnmpCert <= netCert

reply Publication signing chain
reply <= nodCert <= deviceCert <= configCert <= netCert

Note this implements trust rules where operators can do any local or remote (“all”) measurement but the only non-local measurement regular users can do is the Pinger.

�13

cmd = {
 /myhouse/dnmp/nod/local/command/<Id>/<!pType>/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/local/command/<Id>/Pinger/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/all/command/<Id>/Pinger/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/<!nodId>/command/<Id>/Pinger/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/local/command/<opId>/<!pType>/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/all/command/<opId>/<!pType>/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
 /myhouse/dnmp/nod/<!nodId>/command/<opId>/<!pType>/<!pArgs>/<!origin $sysId>/<!cTS $tStamp>
}
reply = {
 /<!cmd: command=>reply>/<nodId>/<!rTS $tStamp>
}
roleCert = {
 /myhouse/dnmp/user/<Id>/KEY/_/_/_
 /myhouse/dnmp/operator/<opId>/KEY/_/_/_
}
nodCert = {
 /myhouse/dnmp/nod/<nodId>/KEY/_/_/_
}
deviceCert = {
 /myhouse/device/<devId>/KEY/_/_/_
}
configCert = {
 /myhouse/config/<confId>/KEY/_/_/_
}
dnmpCert = {
 /myhouse/dnmp/KEY/_/_/_
}
netCert = {
 /myhouse/KEY/_/_/_
}
8 cert types, 16 total schemas
 reply: 12 components
 cmd: 10 components, 7 variants
 roleCert: 8 components, 2 variants
 nodCert: 8 components
 deviceCert: 7 components
 configCert: 7 components
 dnmpCert: 6 components
 netCert: 5 components
13 unique literals (67 bytes):
 KEY(7) Pinger(3) all(2) command(8) config(1) device(1) dnmp(11) local(3) myhouse(14) nod(8) operator(1) reply(1) user(1)
5 unique refs (22 bytes):
 Id(5) confId(1) devId(1) nodId(2) opId(4)
7 unique params (30 bytes):
 cTS(7) cmd(1) nodId(2) origin(7) pArgs(7) pType(4) rTS(1)
2 unique built-in functions called (11 bytes):
 sysId(7) tStamp(8)
reference map:
 devId: deviceCert[2]
 confId: configCert[2]
 Id: cmd[5](1,2,3,4) roleCert[3](1)
 opId: cmd[5](5,6,7) roleCert[3](2)
 nodId: nodCert[3] reply[10]
validation chains:
 Id in cmd[5](1,2,3,4) validated by roleCert[3](1)
 opId in cmd[5](5,6,7) validated by roleCert[3](2)
 nodId in reply[10] validated by nodCert[3]

Example
VerSec
compiler

diagnostic
output

Use of shim and
schemer

simplifies Client
applications

�14

shim builds valid publication
from arguments, sets callback

callback: note use of
component names

main loop

Use of shim
and schemer

simplifies NOD
applications

�15

callback uses probe function table to invoke method that returns reply content

shims subscribe to commands
in target and set callback

NOD main loop

�16

Interests/Data
& Registrations

syncpsshim

schemer

N
FD

A
pp

lic
at

io
n

shim (173 lines of C++) interacts with applications, schemer, and sync
• provides upcalls to syncps: expire, validate, sign, priority
• uses schemer to construct valid publications
• implements API

- run() used by applications to pass control to NDN Face through shim
- waitForCmd() used by NODs to go into state of waiting for a command pub
- sendReply() used by NODs to publish result as reply pub
- issueCmd() used by Clients to turn pType, pArgs, and target into a command pub
- schedule() used by Clients to set timer

relevant info
extracted from
filtered publications

valid
class-specific
publications

validate
publicationsign

publication

choose keys,
construct

publication extract
components

expired?
sending priority?

bespoke transport
What’s in the shim?

Command-to-Reply data flow

�17

Client app

Active Publications Table

NFD

publish()

replyCb()

I1 I2D1 D2

Interest/Data validator

Pub validator

issueCmd()

pubFromArgs()
Build &

Sign Pub

schemer

syncps

CRshim

PIB (public
key store)

TPM (private
key store)

subscribeToReply()

• All NODs in sync, waiting
for command(s). Single
pending Interest I1.

• Client issues a command
which results in sending
Data D1 satisfying I1 and
an updated Interest I2 to
solicit reply(s).

• NOD sends reply in Data
D2 satisfying I2 which gets
delivered to client via
reply callback set when
command issued. Also
results in updated Interest
I3 to solicit more reply(s).

I3

1. In steady-state all peers are in sync so there’s one Interest being refreshed, I1, containing the IBLT of their common set of pubs.
2. When the client calls issueCmd, the CRshim calls the schemer with its target plus the supplied probe type and args. The schemer finds the set of command publications allowed for target, pType & pArgs then scans the user’s TPM looking for key(s) that could validly

sign these publications. If one is found, that key, the associated publication’s schema and the caller’s target, pType & pArgs are enough to construct and sign a complete ‘command’ publication which is returned to the shim.
3. Given the complete command, the shim know what reply(s) to it look like so it calls syncps to subscribe (which will result in the client supplied reply callback (replyCb above) being called with each arriving reply as soon as it has been validated.
4. Once the reply subscription is in place, the shim calls syncps ‘publish’ to add the command to the current set of active publications. Since there’s now a publication not in the set described by I1, syncps constructs an NDN Data, D1, containing the command pub and

satisfies I1 with it. It also sends a new Interest I2 announcing it holds the common set plus the new command.
5. NODs receive D1, extract and validate the command then generate a reply which results in sending a new Data D2 satisfying I2.
6. Syncps receives and validates D2 then the reply pub it contains then adds the reply to the active publications which triggers a callback to the client’s reply handler. Adding the reply also triggers sending of a new Interest I3 soliciting additional replies.

Status / Summary

• Co-development of DNMP with VerSec, bespoke
transport modules proved extremely helpful
• bespoke transport modular model eased development
• VerSec toolkit takes trust schema design to useful code
• using information-centric approach to measurement seems intuitive
• our approach and new tools make application implementation more

straightforward

• Features that are underway
• talk covered current release of DNMP, some differences from paper
• snoop shim for Audit application
• direct instrumentation of NFD that NOD probes can query
• keep tuning multicast strategy for broadcast networks
• would like some sort of protobuf for Data content (please, someone?)

• DNMP is open source GPL-3.0

�18

All the files in DNMP release total 1280 lines of code and 642 comment lines
% linesofcode {,syncps/}*.[ch]pp
 lines code comment blank file
 291 173 93 25 CRshim.hpp
 157 98 46 13 bh-client.cpp
 186 119 54 13 generic-client.cpp
 117 57 43 17 nod.cpp
 336 230 73 33 probes.hpp
 432 265 111 56 syncps/iblt.hpp
 614 338 222 54 syncps/syncps.hpp
 2133 1280 642 211 total

Links

DNMP release at https://github.com/pollere/DNMP
NFD patches at: https://github.com/pollere/NDNpatches
Versatile Security toolkit at: https://github.com/pollere/versec (by 09.30.19)

Van Jacobson on VerSec (in brief): http://pollere.net/Pdfdocs/ICN-
WEN-190715.pdf, https://vimeo.com/354013644

NDNcomm 2019 slides: http://pollere.net/Pdfdocs/BuildingBridge.pdf

�19

https://github.com/pollere/DNMP
https://github.com/pollere/NDNpatches
https://github.com/pollere/versec
http://pollere.net/Pdfdocs/ICN-WEN-190715.pdf
http://pollere.net/Pdfdocs/ICN-WEN-190715.pdf
https://vimeo.com/354013644
http://pollere.net/Pdfdocs/BuildingBridge.pdf

Example: VerSec compiler input for NLSR

• 15 lines of code, 15 lines of comments

�20

Performance Issues

• “This doesn’t work the way you think it does”
• The NFD code doesn’t always match the architecture,

particularly devastating impact on multicast
• Interests are not held in PIT until timeout, but only put in PIT on forward
• PIT not checked on new FIB entry, e.g. new registration
• LP::Nacks cause premature Interest death
• No Interest suppression reduces efficiency
• RETX suppression causes premature Interest death

• Patches completed for these problems
• Mostly involve removing code
• Insufficient broadcast testing is being done on codebase additions

�21

©Pollere, Inc. www.pollere.net

Patches for LP::Nack and PIT discard issues

�22

Takeaway: rigorous application-driven testing and measurement must be
performed so that applications get known quantity

patched
NFDv0.6.6-20-g07f2e2f

Test uses echo measurement
(origination timestamps of both
initial Command and its Reply)
20,000 exchanges:
Before patch: mean=730ms,
median=866ms
After patch:
mean=median=5ms

http://www.pollere.net

