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Abstract

Routing infrastructure plays a vital role in the Internet, and
attacks on routers can be damaging. Compromised routers
can drop, modify, mis-forward or reorder valid packets. Exist-
ing proposals for secure forwarding require substantial com-
putational overhead and additional capabilities at routers. We
propose Secure Split Assignment Trajectory Sampling (SATS),
a system that detects malicious routers on the data plane.
SATS locates a set of suspicious routers when packets do not
follow their predicted paths. It works with a traffic measure-
ment platform using packet sampling, has low overhead on
routers and is applicable to high-speed networks. Different
subsets of packets are sampled over different groups of routers
to ensure that an attacker cannot completely evade detection.
Our evaluation shows that SATS can significantly limit a ma-
licious router’s harm to a small portion of traffic in a network.

1. Introduction

Routers are crucial to the Internet. Unfortunately, attacks
aimed directly at routers are prevalent and on the rise. Ac-
cording to CERT/CC, there are lists of thousands of compro-
mised routers being traded underground [5]. There are hacker
tools, openly available on the Web, to scan, identify and even-
tually exploit routers with weak passwords and default set-
tings. More recently, Lynn [14] presented Cisco IOS’s se-
curity flaws, which allow hackers to seize control of Cisco
routers. Compromised routers are being used as platforms to
send spam, launch Denial-of-Service (DoS) attacks, intercept
sensitive traffic, and carry out illegal yet profitable activities.
In general, since routers are considered trusted entities in a
network, their power can be easily exploited once they are
compromised.
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In order to secure the Internet routing infrastructure, the
two main planes of network functionality (i.e. control and
data) must be protected. The control plane runs intradomain
and interdomain routing protocols to build forwarding tables
at routers. The data plane forwards (or drops) packets accord-
ing to forwarding tables built by the control plane. Recently,
considerable research and industrial efforts have addressed se-
curing routing protocols, e.g. securing Border Gateway Proto-
col (BGP), the de facto glue for Internet interdomain connec-
tivity [9]. A secure version of BGP provides path and prefix
attestations, which prevent propagation of illegitimate routes.
Even in the presence of a secure control plane, however, a
compromised router can disregard decisions made by the con-
trol plane and act autonomously and maliciously on the data
plane. It can modify, drop, delay, reorder, mis-forward valid
packets or permit otherwise prohibited packets. Such misbe-
havior would not be prevented by any secure routing protocol.

This paper presentsSecure Split Assignment Trajectory
Sampling (SATS), a system that detects packet modification,
substitution, dropping, reordering and forwarding loop attacks
carried out by subverted routers. SATS detects attacks if the
observed paths of packets are not consistent with the predicted
ones, and pinpoints a set of suspicious routers. As SATS is de-
signed for high-speed networks, it relies on packet sampling,
and so routers only need to do additional processing on a sub-
set of packets. While sampling decreases monitoring over-
head at each router, the accuracy of detection depends on how
samples are selected. If the samples do not contain compro-
mised packets, attacks would not be detected. Thus, SATS
usesSplit Range Assignmentthat prevents attackers from bi-
asing sample selection. To sample packets and to observe
paths that the selected packets followed, SATS can be inte-
grated with the Trajectory Sampling traffic measurement sys-
tem [2]. Secure communication between routers and the back-
end measurement engine is also needed. SATS has low im-
pact on router processing and memory usage: it only applies
a modular hash function on each packet and a cryptographic
hash function on selected packets. The rest of the detection
process is done externally on a backend measurement engine.



2. Related Work

Related work on detecting and locating data-plane misbe-
havior falls into two categories: active probing and passive
monitoring. SATS is a passive monitoring scheme.

Secure Traceroute [13] sends probing packets to detect
packet drop, modification and mis-forwarding attacks. Once a
human operator notices performance degradation on a path,
Secure Traceroute is initiated and routers respond to the
probing packets. Stealth Probing [1] sends probing packets
through an encrypted channel with normal packets to make
probing packets indistinguishable from normal packets. To
protect all packets, every packet has to be encrypted in this
scheme. In general, in active probing, the probing packets
must be similar to the packets that are being attacked. How-
ever, it is not easy to determine beforehand which packets will
be attacked. It is also not clear when to initiate probing and
where to probe.

The Conservation of Flow (CF) [8] is a passive monitoring
scheme. CF analyzes traffic volume at various observation
points in a network. Discrepancies between the ingress traffic
volume and the egress traffic volume at different points indi-
cate potential problems. CF can discover dropping of packets
but fails to detect modification of packets if traffic volume re-
mains the same. Hughes et al. [8] address several ways to fool
the CF algorithm. Fatih [11] considers other types of attacks
including packet modification, substitution, mis-forwarding
and reordering. Routers compute hashes of packet content
to validate integrity of content as well as ordering. To reduce
the overhead on routers, Fatih proposes a path-level detection
algorithm while increasing the size of the suspicious set of
routers. For both CF and Fatih, most of detection processing
is done on routers. In SATS, only a subset of packets are sam-
pled by routers and the sampled packets are examined on an
external measurement engine.

Listen [15] and Feedback-based Routing [16] detect con-
nectivity problems between two end-hosts by monitoring TCP
packets but does not aim to localize the problems. Finally,
Herzberg and Kutten [7] proposes a protocol that detects de-
laying and possibly dropping of packets by using timeouts and
acknowledgments.

3. Background

In this section, we briefly describe previous works on flow-
level measurement and Trajectory Sampling (TS). We dis-
cuss only material relevant to SATS. Flow-level measurement
provides more fine-grained information about network traffic
than the traditional link-level SNMP approach. A router peri-
odically sends records about its flows to a collection machine
that processes the records. Cisco’s Netflow as well as flow-
level measurement solutions from other vendors are widely
deployed in networks. These tools are used to calculate traf-
fic matrices to provision a network, understand traffic mix in

terms of application types, and find reasons behind sudden
traffic spikes.

For high data rate interfaces, packet sampling is necessary
to scale flow-level measurement. Otherwise, a router quickly
runs out of processing cycles and memory while trying to ex-
amine every passing packet, and its forwarding performance
is severely degraded. Netflow uses a simple 1-out-of-N sam-
pling method but not without problems [4]. Improved meth-
ods have been proposed, such as the novel Trajectory Sam-
pling (TS) proposed by Duffield and Grossglauser [2]. The
main idea of TS is that a packet is either sampled at every
router along its path, or not sampled at all. The IETF is work-
ing on standardizing various aspects of flow-level measure-
ments including TS to ensure multi-vendor compatibility and
industry-wide acceptance. TS works as follows:

• A router applies aselection hash function, hselection(),
to compute ahash valueover the invariant portion of a
packet. The source and destination IP addresses, port
numbers, protocol and payload remain the same as a
packet travels across the network, and thus are included
in the calculation. On the other hand, the TTL, ECN,
TOS and CRC checksum are not included in the calcula-
tion as they can be changed.

In order to achieve unbiased and uniform sampling, this
hash function must generate values that appear statisti-
cally independent of its input. Using large packet traces
from a Tier-1 ISP network, [2] show that modular arith-
metic with prime moduli satisfies this property.

• If the hash value falls into the predeterminedsampling
range, the packet is sampled. The size of this sampling
range,Nsmall, divided by the total size of thehash range,
Ntotal, is the effective sampling rate,psamp. The actual
sampling rates used vary by networks, and we have seen
1/100, 1/1000 and smaller.

• For each sampled packet, alabel hash function, hlabel(),
computes another hash value over the invariant portion
of a packet. The hash value is called thelabel of the
packet since the label provides a unique ID of the packet.
This label is then reported back to a machine for process-
ing – this is called thebackend enginein TS. A different
hash function is used to make the label small, yet unique
during a measurement interval. An ingress router also
reports akey, which contains raw header information of
a flow, for each sampled packet.

• The backend engine reconstructs the path a sampled
packet traversed in the network. This path is called the
packet’s trajectory. The backend engine sets a timer
when it first receives a labell. When the timer expires,
the backend engine gathers the routers that sent labell
and reconstructs the packet’s trajectory. It assumes that
the network topology is known. A possible timeout value
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Figure 1. Overview of SATS.

is the sum of the upper bounds of all possible delays: the
delay within the label buffer before a label is exported,
and the propagation and queuing delay a packet experi-
ences from a reporting router to the backend engine. The
backend engine also provides storage, query and visual-
ization functions.

• hselection(), hlabel() and the sampling range must be
identical at all routers during a measurement interval.
This ensures that a packet is sampled at all routers on its
path or at none. If each router randomly samples a subset
of packets as in Netflow’s 1-in-N method, a packet’s path
cannot be reconstructed. To adjust the sampling rate, an
out-of-band mechanism is used to change the sampling
range on all routers.

Besides the benefits of fine-grained flow-level measure-
ments and reduction of overhead on router performance
through sampling, TS has a number of additional advantages.
It is a direct observation method: a packet’s or flow’s path
is measured directly, without needing to know IGP and BGP
routing state. On the other hand, Netflow-style data requires
routing state, in order to derive the original path of a packet
or flow. This indirect method is not as accurate as the di-
rect observation, as there are synchronization issues during the
computation. Another advantage is that the reconstructed tra-
jectories can be used to passively measure link performance,
without the injection of active probe traffic into a network.

4. SATS

4.1. Overview and System Model

SATS extends upon TS to detect malicious routers. In this
paper, SATS is limited to routers within a single administra-
tive domain, such as ISP, university campus or enterprise net-
work, or multiple cooperating domains that are open to share
measurement data with one another. We also assume that the
network topology is known. SATS can detect one or multi-
ple consecutive malicious routers on a path if there are non-
malicious routers at both ends of the malicious routers. Thus,
we assume that the first and the last router on a path are cor-
rect. This assumption is necessary and also stated in all related
work. SATS cannot detect mis-forwarding behavior that does
not manifest itself as a forwarding loop.

Figure 1 illustrates the SATS design, which consists of the
following functions:

Split Range Assignment: SATS assigns multiple overlapping
hash ranges to routers to minimize the probability that an at-
tacker can completely evade detection. In contrast, TS uses a
single universal sampling range for every router in a network,
which is vulnerable to attacks. We call our schemeSplit Range
Assignmentand TS’sSingle Range Assignment.

Report Collection: A router samples a subset of packets based
on its assigned sampling range and reports the hash labels and
keys of sampled packets to the backend engine. Report collec-
tion in SATS is the same as TS. SATS (as in TS) is designed
with router performance in mind, and we aim to keep router
state and processing to a minimum. The next three functions
are carried out by the backend engine, not by routers.

Reconstruction and Aggregation of Trajectories: At the end of
each measurement interval, the backend engine reconstructs
trajectories of sampled packets using reports from routers.
Trajectories with the same ingress router and destination rout-
ing prefix pair are in turn aggregated. SATS detects anomalies
based on this aggregation unit instead of a single trajectory.

Pinpointing Malicious Routers: In each aggregation, SATS
looks for inconsistent trajectories that are different from their
predicted trajectories. If inconsistent trajectories are found,
SATS locates a set of suspicious routers that are responsible
for the attack.

4.2. Split Range Assignment

Let us consider a malicious router that not only misbe-
haves, but also tries to avoid detection by attacking packets
that are not being sampled. In Single Range Assignment, the
malicious router knows that the hash range it has been as-
signed is the only sampling range being sampled throughout
the network. In Split Range Assignment, we vary sampling
ranges from router to router. Different sampling ranges are as-
signed by the backend engine through encrypted and authen-
ticated channels to ensure that the sampling range assigned to
a router is unknown to other routers. Thus, only the backend
engine has knowledge of the entire range assignments.

Figure 2 illustrates Split Range Assignment. A long ver-
tical rectangle at a node represents the entire hash range of
the selection hash function. Within the entire hash range, the
small gray rectangles depict the hash values in the sampling
range at the node. As opposed to Single Range Assignment in
Figure 2.(a), Split Range Assignment in Figure 2.(b) has sam-
pling ranges that varies from router to router. However, the
sampling ratepsamp = Nsmall/Ntotal = 6/31 = 0.19 at a
router remains the same. If a malicious router,r4, ever attacks
packets outside of its sampling range{25, 15, 28, 14, 12, 8}
(e.g., hash value 4) the attack will soon be noticed by{r2, r6}.
Note that Split Range Assignment is not random sampling (as
in Cisco Netflow) since more than one router would be as-
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Figure 2. Hash ranges in Single Range Assignment (a) and Split Range Assignment (b).

Stotal: a set of all the routers in a network

PR: a set of prime numbers, whereprimei ∈ PR is thei-th element

Nrouter : the number of routers inStotal

N ′
small = Nrouter − 1; N ′

total = N ′
small/psamp;

Ntotal = mini(primei), primei ≥N ′
total;

Nsmall=b(Ntotal × psamp)c;
for eachpair of routers (ri,rj ), i < j, ri ∈ Stotal, rj ∈ Stotal:

selectone hash valuehi out of Ntotal hash values in the entire hash

range at random

assignhi to (ri,rj )

Figure 3. Split Range Assignment algorithm.

signed the same sampling range, such as the hash value 4 in
{r2, r6} in Figure 2.(b). If all the routers have different sam-
pling ranges (as with random sampling), we cannot compare
samples from one router with samples from any other routers.

We assign different sampling ranges as follows. A router
shares one hash value with each router in a network. Thus, if
there areNrouter routers in the network,Nsmall = Nrouter−
1 hash values are assigned to a router. Givenpsamp, we find
Nsmall andNtotal for the selection hash function as shown in
Figure 3. For example, withpsamp = 6/31 andNrouter = 7
routers in the network (Figure 2.(b)),Ntotal = 31, which is
the smallest prime number greater than or equal to(Nrouter−
1)/psamp = 31. ThenNsmall = bNtotal × psampc = 6 hash
values are assigned to each router in a way that one router has
one hash value in common with each of the other 6 routers.
For instance,r1 shares the hash values 13, 2, 25, 30, 5 and
9 with r2, r3, r4, r5, r6 andr7, respectively. We evaluate the
detection rate of this assignment method in Section 6.1 and we
show that the probability that an attacker can avoid detection
is fairly low.

Split Range Assignment also ensures that SATS is able to
trace packets in case routing changes. On any given path, each
pair of routers have at least one common hash value. Thus, we
can compare samples from one router with samples from any
other routers.

4.3. Inconsistent Trajectories

Split Range Assignment prevents malicious routers from
tampering with the sampling process. Sampled packets are
then reported to the backend engine, where the trajectories of
the packets are reconstructed. The trajectories are then fed
into the SATS detection process. We first provide the main
premise of the SATS detection process. We then elaborate
each step in detail in the following sections.

The main premise of the SATS detection process is that if
packets are manipulated, the resulting trajectories will not be
consistent with the predicted trajectories. Figure 4 shows the
predicted and resulting trajectories of a packetp, which is sup-
posed to go from an ingress noderi−2 to an egress noderi+3.
The label ofp is l = hlabel(p). The predicted trajectory ofp
is shown in Figure 4.(a). Ifp is dropped at a noderi (Figure
4.(b)), the trajectory ofp, tnormal, ends atri before reaching
its egress node. Ifp is modified top′ at ri (Figure 4.(c)), the
trajectory for the labell, tnormal, also ends prematurely atri

since the label is changed tol′ = hlabel(p′) beforep is for-
warded tori+1. In the case of modification, a new trajectory,
torphan, for the new labell′ starts fromri+1 if hselection(p′)
falls in the sampling range. We refer to the new trajectory as
anorphan trajectoryas opposed to anormal trajectorysince
the new trajectory has no origination point, that is, no ingress
router reported the trajectory’s label,l′. Whentorphan is dis-
carded, the two early ended normal trajectories,tnormal’s, in
(b) and (c) look the same. Consequently, we use the early
ending of a normal trajectory as a clue to detect both packet
dropping and modification. Orphan trajectories are discarded
since we already have a way to detect anomalies. Substitution
of a packet for another packet yields two modified packets and
is thus detected as well.

In Split Range Assignment, a packetp sampled from a hash
valueh is not sampled at all the routers on the path. Thus, the
trajectoryt of p has holes on the routers with hash values other
thanh. If t has a hole in any of the routers whereh is assigned,
the trajectory is inconsistent.t is an orphan trajectory ift has a
hole in the first router whereh is assigned onp’s path. In [10],
we have shown that SATS can perform traffic measurement
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functions of TS even with holes in trajectories.
Because of space, we focus on the detection of packet drop-

ping, modification and substitution in the rest of this paper.
The detection of routing loops and reordering attacks is de-
scribed in detail in the technical report version of this pa-
per [10]. Briefly, if trajectories intersect themselves, we report
them as routing loops; we detect packet reordering attacks by
comparing the time-ordered list of labels from a router with
the list from another router with the same sampling range.

4.4. Aggregation of Multiple Trajectories

At the end of each measurement interval, trajectories are
aggregated into the same flow, which is defined as the tra-
jectories with the same ingress router and destination routing
prefix pair. Based on eachaggregationrather than each tra-
jectory, we make a decision concerning anomalies. The ag-
gregation is done mainly for two reasons. First, running one
detection process for each set of aggregated trajectories scales
better than running one detection process for each trajectory,
especially in a high load situation where thousands of pack-
ets are sampled each second. Second, the aggregation helps
us use a threshold to differentiate between legitimate packet
drops and malicious attacks. We do not raise an alarm for each
inconsistent trajectory, which might be caused by congestion
or an error in the packet header1. Instead, we raise an alarm
only when the number of inconsistent trajectories in an aggre-
gation is more than the threshold. Setting the threshold de-
pends on the network. For example, legitimate packet losses
in wireless networks are much more likely than in wired net-
works. Thus, the threshold must be determined accordingly.
Also, the threshold has to be changed adaptively according to
the average traffic volume. The number of samples collected
from a link and the link capacity can help to predict the le-
gitimate packet loss ratio and can thus help to determine the
threshold.

In order to identify the flow of a normal trajectoryt, we

1The loss of report packets en route to the backend engine can also cre-
ate incomplete trajectories. [3] provides a way to infer the packet loss rate
from the report loss rate. The report loss rate is estimated from the sequence
numbers carried by report packets.

ti[rj ]: If a trajectoryti has a report fromrj , ti[rj ] = 1. If not, ti[rj ] = 0.

H(i): a set ofNsmall hash values in the sampling range assigned tori

Cprim[hj ][ri]: the primary counter for the hash valuehj of ri

Ssuspect: a set of suspicious routers

// Aggregation algorithm

for eachnormal trajectoryti sampled from a hash valueh in a flow:

for each routerrj on the path:

if (ti[rj ] = 1 andh ∈ H(i)) then Cprim[h][rj ] = Cprim[h][rj ]+1;

// Detection and Pinpointing algorithm

for eachnoderl in the flow:

for eachhash valuehk ∈ H(l):

if ((Cprim[hk][rl]− Cprim[hk][rr]) > THprim) then

// rr is the closest node torl in the flow, whereH(r) 3 hk andr > l

Ssuspect = Ssuspect ∪ {rs : l ≤ s ≤ r};

Figure 5. Aggregation and Detection algorithms.

need to know both the ingress router and the destination rout-
ing prefix. We use the key reported from the ingress router
since the key includes the destination routing prefix. However
in Split Range Assignment,t may have a hole in the ingress
router. Thus, we have all routers, not only the ingress routers,
report a key for each sampled packet. The key has to include
the source IP and the destination routing prefix. We then iden-
tify the ingress router oft through another trajectoryt′ that
does not have a hole in its ingress router. The ingress router
of t′ is the same one fort if t′ has the same source IP and
destination prefix as those oft.

Figure 5 shows the pseudo code of the aggregation algo-
rithm. The aggregation process can be thought of as overlay-
ing of trajectories one after another. In the backend engine,
we maintain aprimary counter, Cprim, for each hash value
assigned to each node on the path.Cprim[h] counts the num-
ber of normal trajectories sampled from a hash valueh in a
node. Thus, if some of the trajectories end prematurely at a
noder, thenCprim decreases for nodes beyond the noder in
the path. If the decline is more than the thresholdTHprim,
the aggregation is marked as an anomalous one. Dropping of
packets below the threshold can avoid detection, but the attack
would not be more significant than temporary congestion.

Figure 6 illustrates an example of the aggregation algo-
rithm. The number in the parentheses next to a trajectory is
the hash value where the trajectory is sampled. The primary
counter values are shown at the bottom. We assume that the
hashes of the six trajectories are distributed into three differ-
ent hash values, 3, 5 and 6. A trajectory sampled from a hash
valueh has “holes” on the routers whereh is not assigned.
However, the aggregation of trajectories shows the complete
path followed by the packets in the flow, which is thepredicted
trajectoryof the packets. A malicious router,r3, modifies half
of the packets,b, d andf . The modified packets result in three
orphan trajectories,{t′b, t′d, t′f}. The orphan trajectories are
then discarded during the aggregation, since we already have
a way to detect anomalies as shown by the early ending of nor-
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mal trajectories,{tb, td, tf}. As the normal trajectories ofb,
d andf , {tb, td, tf}, end atr3, they do not incrementCprim’s
for nodes beyondr3. Thus, when the normal trajectories are
aggregated,Cprim decreases beyondr3.

Cprim represents the number of normal trajectories sam-
pled from each router. Note thatCprim is maintained in the
backend engine, not in each router, and updated when trajec-
tories are aggregated in the backend engine.

4.5. Pinpointing Malicious Routers

Once trajectories are aggregated, we check for inconsistent
trajectories in each aggregation and pinpoint a set of suspi-
cious routers. We show the algorithm in Figure 5. To find
inconsistent trajectories, we compareCprim’s for two routers
{ri, rj} (i < j) where the same hash valueh is assigned. We
compare the samples of the same packets. If the decrease in
Cprim for {ri, rj} is more thanTHprim, we pinpoint all the
routers betweenri and rj including {ri, rj} to be the sus-
picious regionthat includes a set of routersSsuspicious =
{rk : i ≤ k ≤ j}. Figure 7 shows an example of a suspi-
cious region. Sincer2 and r5 have the same hash value 8,
the Cprim[8]’s for {r2, r5} are compared. Observing a de-
crease in theCprim[8]’s for {r2, r5}, we conclude that{r2,
r5} and the routers between{r2, r5} are suspicious. Thus,
Ssuspicious = {r2, r3, r4, r5}.

The reason for choosingSsuspicious as suspects is based on
three possible scenarios: (In Figure 7,ri andrj correspond to
r2 andr5, respectively.)
Scenario 1: ri is malicious. The packets were dropped atri.

rj reported correctly that it had not seen the packets.rj did
not report the dropped packets to the backend engine. Alter-
natively, when there are consecutive malicious routers, one
of the previous nodesrl ∈ {rn : 1 ≤ n < i} dropped the
packets, the following nodes fromrl+1 to ri misinformed the
backend engine that they had observed the packets and finally
rj reported correctly.

Scenario 2: rj is malicious. ri forwarded the packets cor-
rectly, butrj did not report the packets to the backend engine.
rj may or may not have dropped the packets.

Scenario 3: One of the routers betweenri andrj (i.e., rm ∈
{rn : i+1 ≤ n ≤ j−1}) dropped the packets. The hashes of
the dropped packets do not fall in the sampling ranges of any
routers betweenrm andrj , Snon = {rn : m ≤ n ≤ j−1}. In
other words, the packets under attack are not supposed to be
sampled at any of the routers inSnon. Thus,Cprim’s for Snon

do not decrease. On the other hand, the hashes of the packets
fall in the sampling range ofrj , andCprim for rj decreases.

In all three scenarios, one of the routers inSsuspicious must
be faulty. To further reduce the size ofSsuspicious, we assign
the hash valueh that is common in the sampling ranges of{ri,
rj} to the routers between{ri, rj} [10].

Consecutive Malicious Routers: Although there might be
other colluding routers beforeri as shown in scenario 1, we
first examineSsuspicious. Among all the consecutive collud-
ing routers, the last one must be inSsuspicious. If the routers
beforeri continue to behave maliciously, they will be even-
tually detected one by one. In summary, if there is a correct
node at the end of the colluding routers, all colluding routers
are detected.

Incremental Deployment: Betweenri andrj , there might be a
set of routers,Snon, that do not have deployed SATS. In this
case, the routers inSnon are also included in the suspicious
region sinceCprim decreases at the same noderj if any one
of Snon have manipulated the packets.

Equal-Cost Multi-Paths and Routing Changes: We may ob-
serve an aggregation where a node,ri, branches inton(> 1)
nodes, fromrb1 to rbn, if there are equal-cost multi-paths or
routing changes. In this case, we compareCprim for ri with
the sum of theCprim’s for all the nodes branching fromrj .
Thus, if ((Cprim[h][ri] −

∑n
k=1 Cprim[h][rbk]) > THprim),

we suspect the set{ri}∪{rbk : 1 ≤ k ≤ n}. Then, from each
of rbk, we resume the detection process. Figure 8 shows an
example where node 4 branches into node A and node D. The
number below a node represents the primary counterCprim

for the node. We assume that node 4, A, and D have the same
hash value. The detection process is running at node 4. If
(100− (30 + 40) > THprim), both node A and D along with
node 4 are reported as suspicious. We then resume the detec-
tion process from node A and D.
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Figure 8. Suspicious region when an aggregation
branches into two paths.

5. Security Analysis

In this section, we address a variety of possible scenarios
that could be used to circumvent or confuse SATS. For each
scenario, we show how SATS detects the attack and suggest
some countermeasures, if necessary.

5.1. Dropping of Report Packets and Misreporting

Although report packets are sent to the backend engine
through encrypted and authenticated channels, a malicious
router may not forward the reports of other routers. This be-
havior is detected as a normal packet drop as reports are trans-
mitted in packets and can thus be sampled. In an extreme case
(Figure 1), a malicious router,r4, on the way to the backend
engine can drop all the report packets from a set of routers,
{r1, r2, r3}. If the backend engine does not receive any re-
port from a routerri, the routers on the way fromri to the
backend engine are assumed to be suspicious and examined.
In this example,{r1, r4}, {r2, r4} and{r3, r4} are in the sus-
picious regions. Among the routers in the suspicious regions,
the router that overlaps the most, routerr4, is examined first.
If r4 keeps dropping report packets, it will be the first router
to be examined and detected.

If a malicious router does not sample some of the packets
in its sampling range, or samples wrong packets, the corre-
sponding labels are not reported. It results in an inconsistent
trajectory as well.

5.2. Label Collision Attack

A malicious router,r, can modify a packetp with label l
into another packetp′ with the same labell, if r can findp′

wherehlabel(p′) = hlabel(p) = l. Then, the trajectory ofp
will not end early atr. Thus, the trajectory appears complete,
andr can go undetected. In order to prevent this attack, we
use a 2nd-preimage resistant hash function (for a given value
x, it is computationally infeasible to find ax′ 6= x such that
h(x′) = h(x).) to generate labels. Popular checksum algo-
rithms, such as MD-52 or a universal one-way hash function

2Note that 2nd-preimage resistance is different from collision resistance,
where x is not given, and both ofx and x′ are to be chosen such that
h(x′) = h(x). Although MD-5 is not collision resistant, it is still 2nd-
preimage resistant.
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Figure 9. Solution to reduce the false positives due
to TTL adjusted packets.

with stronger security and statistical properties [12] can be
used. Although we use a cryptographic label hash function
hlabel(), the selection hash function,hselection(), remains the
same as that of TS.

5.3. TTL Modification

Changing the TTL value to a very low number could
cause a packet to be dropped by other legitimate downstream
routers. This behavior would divert attention away from the
real attacker. Such changes would not be caught byCprim

ashlabel() does not operate over variant fields including TTL.
This behavior can be prevented by reporting the TTL value,
along with a label, at each sampling node. If the difference
between the TTL values from two nodes are more than the
number of hops between the nodes, these nodes are suspects.

Some legitimate packets may also be detected as anoma-
lous, especially the packets where TTL is adjusted so that they
can be dropped prematurely (e.g., traceroute packets). If the
ratio of these packets is high enough to cause false positives,
we can compensate for the effect by incrementing theCprim’s
for the nodes after the point where the TTL is supposed to ex-
pire. Figure 9 illustrates such an example. We assume all the
trajectories are sampled from the hash value 8. Thus, we only
add toCprim[8]’s. Since trajectories 1 and 2 end where the
TTL’s are supposed to expire, the additions toCprim’s are the
same as trajectory 0 when they are aggregated. On the other
hand, trajectory 3 indicates that it ended earlier.

6. Evaluation

We evaluated the detection rate and incremental deploy-
ment property of SATS using simulation and present the re-
sults here. We used 14 topologies with various node degrees
and network diameters: four are published by real networks,
and the rest are generated by Georgia Tech’s topology gen-
erator using either random or Waxman models [6]. We did



Table 1. Summary of topologies used in our evalua-
tion.

Topology No. of No. of Node No. Nodes on Link
Nodes Edges Degree Shortest Path Metric?

ATT 54 144 1, 1.5, 6 5, 7, 9 No
CENIC 25 54 1, 2, 4 5, 7, 9 Yes

Berkeley 43 112 1, 1, 6.5 4, 5, 6 Yes
CMU 102 250 1, 1, 4.3 4, 6, 6 No

Waxman1 100 286 1, 3, 5 4, 6, 8 No
Random1 100 374 2, 3, 6 3, 5, 6 No
Random2 100 712 4, 7, 10 3, 4, 4 No
Waxman2 100 1004 6, 10, 14 2, 3, 4 No

not use the transit-stub model because this evaluation is for
SATS in a single autonomous system. Eight of the 14 topolo-
gies are summarized in Table 1. The three numbers under the
“Node Degree” and “No. Nodes on Shortest Path” columns
denote the 10th-percentile, median and 90th-percentile val-
ues, respectively. In our simulation, for each topology, we
compute the shortest path between each pair of edge routers
to be the path taken between the routers. If link metrics are
available for the topology, we use it in the shortest path calcu-
lation. Otherwise, we assume all links have equal weights.

6.1. Probability of Complete Avoidance

In Single Range Assignment, a malicious router can com-
pletely evade detection by targeting packets whose hashes fall
outside one universal sampling range. In this section, we show
that it is very difficult for such an attack to go undetected in
Split Range Assignment.

We assume that a malicious router,rm, randomly selects
pattack percentage of hash values out ofNtotal values of
hselection(). Then, the number of hash values selected by
the malicious routerrm is Nattack = pattack × Ntotal. Let
Hattack(m) denote a set of theNattack hash values chosen by
rm. rm targets the packets whose hashes fall inHattack(m).
Thus, on average,rm attackspattack percentage of all the
packets.

We definecomplete avoidanceto be the event where all
the hash values inHattack are not assigned to any router in
a given path. In the case of complete avoidance, the packets
being attacked are not sampled at any router and the attack
cannot be detected. We varypattack from 1% to 100% in 10%
increments and derive the probability of complete avoidance,
pavoid. With higherpattack, the malicious router attacks more
packets, but the attack is less likely to go undetected leading
to lowerpavoid.

Figure 10 shows the derivation of the probability of com-
plete avoidance. We illustrate the derivation through the ex-
ample in Figure 2.(b). In this example, we assign 6 hash
values to a router as the sampling range out of 31 different
hash values.Thus,Nsmall = 6, andNtotal = 31. The4-th
router,r4, is a malicious router on a7-hop path. r4 selects

hi: thei-th hash value amongNtotal hash values ofhselection()

H(i): a set ofNsmall hash values in the sampling range assigned tori

Henclose(m) = {hi : hi ∈ H(l), hi ∈ H(r), 1 ≤ l < m < r ≤ T}:

a set of hash values assigned to any pair of routers that enclose a malicious

router,rm, on aT -hop path

Nenclose(m): the number of hash values inHenclose(m) ∪H(m)

Hattack(m): a set of hash values chosen by the malicious routerrm

Nattack = pattack ×Ntotal: The number of hash values inHattack(m)

P (complete avoidance ofrm) = pavoid(m) = P (Hattack(m) ∩
Henclose(m) = φ) = C

Ntotal−Nenclose(m)
Nattack

/C
Ntotal−Nsmall
Nattack

Figure 10. The calculation of the probability of com-
plete avoidance, pavoid.

pattack = 20% of theNtotal hash values (31 × 0.2 ≈ 6 hash
values) out ofNtotal − Nsmall = 31 − 6 = 25 hash val-
ues in {h : 1 ≤ h ≤ 31} − {25, 15, 28, 14, 12, 8}. r4

does not choose the 6 hash values from its own sampling
range,{25, 15, 28, 14, 12, 8}, since these values can also be
assigned to other routers. The number of possible choices is
thusC31−6

6 . r4 attacks packets whose hashes fall in the 6 cho-
sen hash values,Hattack. If any one of the 6 hash values in
Hattack is inHenclose = {30, 5, 9, 27, 4, 11, 7, 17, 20}, the at-
tack will be detected - the attack on the hash value 30, 5, 9,
27, 4, 11, 7, 17, or 20 will be detected by{r1, r5}, {r1, r6},
{r1, r7}, {r2, r5}, {r2, r6}, {r2, r7}, {r3, r5}, {r3, r6}, or
{r3, r7}, respectively. The probability of complete avoidance
of r4, which is the probability that all of the 6 chosen hash
values inHattack are not inHenclose, is C31−6−9

6 /C31−6
6 ≈

0.045.
We assign sampling ranges using three different methods,

Split Range Assignment (Figure 3), random assignment and
Single Range Assignment. In the random assignment, we as-
signNsmall = Nrouter − 1 hash values to a router. The hash
values are randomly chosen out ofNtotal = Nsmall/psamp

hash values ofhselection(). For each node in a topology, we
compute the probability of complete avoidance considering
all the shortest paths where the node is present. We run 100
simulations with the sampling ratiopsamp = 1/1000.

In Figure 11, we only show the results from the topology of
CENIC as the results from other topologies are very similar.
The left graph shows results for both Single Range Assign-
ment and Split Range Assignment, and the right one shows re-
sults for random assignment. The median, 10th-percentile and
90th-percentile values of the ratio are shown. In Single Range
Assignment, unless a malicious router attacks all the packets,
the malicious router can avoid detection with 100% proba-
bility. Random assignment can reducepavoid but not signif-
icantly. In Split Range Assignment,pavoid becomes negligi-
ble aspattack approaches 10%. Thus, attacks on more than
10% of packets can hardly circumvent SATS. An attack with
pattack less than 1% has almost 50% chance of being unde-
tected. However, the resulting attack is limited. The attacker
has to significantly limit its ability to attack only a small por-
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Figure 11. Probability of Complete Avoidance.

tion of packets. In addition, we can further reducepavoid by
periodically re-launching new sampling ranges. Let us assume
that the range assignment in each new launch of sampling
ranges is independent of other launches. A malicious router
also changes its target hash values,Hattack, independently
in each new launch. Then, the probability that the malicious
router avoids detection inn consecutive launches of sampling
ranges ispavoid

n. After 5 such re-launches (n = 5), the
probability of complete avoidance decreases to(50%)5 ≈ 3%
whenpattack=1%.

6.2. Incremental Deployment

In this section, we discuss the size of a suspicious region
detected by SATS. We aim to answer the following questions:
What is the size of a suspicious region relative to the diameter
of a network? does SATS work in different topologies? What
is the incremental deployment property of SATS? Is it neces-
sary to have complete deployment before seeing most of the
benefits? Is a sophisticated deployment scheme needed to put
SATS on strategic routers?

We evaluate two deployment methods: random and degree-
based. The degree-based method chooses routers with the
highest number of neighbors first during deployment. It gives
priority to securing the more critical routers. We also vary
the fraction of routers using SATS, from 0.1 to 1, in 0.1 in-
crements. 80 different combinations of parameters are based
on 10 deployment ratios× 2 deployment methods× 4 real
topologies. 100 simulation runs are made in each combina-
tion.

Figure 12 shows the evaluation results only from the topol-
ogy of ATT as the results from other topologies are very sim-
ilar. The right graph show results for random deployment and
the left one degree-based. The median, 10th-percentile and
90th-percentile values of the ratio are shown. The y-axis plots
the suspicious region ratio, computed as the number of nodes
in the pinpointed suspicious region divided by the total num-
ber of nodes on the shortest path. A node without SATS is
considered to be suspicious. The median, 10th-percentile and

(a) (b)

Figure 12. Suspicious region ratio.

90th-percentile values are shown. The x-axis plots the deploy-
ment ratio.

All graphs show “knees” in the performance curves: af-
ter reaching a certain deployment ratio, from 0.1 to 0.4 de-
pending on the topology and deployment method, the curves
flatten out. In other words, we start seeing most of the ben-
efits of SATS before complete deployment on all routers in
a network. These “knees” happen because of the hierarchi-
cal nature of networks. There are a handful of well-connected
routers that are on most of the shortest paths between pairs of
edge routers. Once these routers deploy SATS, the size of a
suspicious region can be reduced dramatically.

We see that variability is much lower for the degree-based
deployment. In particular, the 90th-percentile values of the
suspicious region ratio are much lower for all the topologies.
The results also show that a practical yet extremely simple
method of deploying SATS on routers with the largest de-
grees first can yield significant improvements over a random
method. A sophisticated deployment method may not be nec-
essary. It is more important to secure first the routers with
higher degrees of connectivity. We focus on the results of the
degree-based deployment below.

When the deployment ratio is zero, the suspicious region
ratio is 1 since all of the nodes on the shortest path is consid-
ered as suspicious. With half of the nodes in a topology de-
ploying SATS, the median values of the suspicious region ra-
tio range from 0.3 to 0.4, depending on the topology. In other
words, we can pinpoint 3 to 4 routers as suspicious routers on
a 10-hop path in the presence of malicious routers with the
deployment ratio of 0.5.

7. Implementation Costs

In this section, we discuss the implementation costs asso-
ciated with SATS in a fictional network. This network has
100 routers (Nrouter) and 300 links. The link rate is 10 Gbps
and all links are 95% utilized. All packets are 500B long.
The sampling ratepsamp is 1/1000. Nsamp, the number of
sampled packets per second on a link, is10Gbps × 95% ×



0.001/(500× 8) = 2375. Let us assume samples are not sent
to the backend engine until they fill up a 1500B packet. Less
than 1500B are stored on each router until they are flushed
to the backend engine. The computational cost on a router is
dominated byhselection(), which is computed for each packet.
Modular arithmetic ofhselection() can be implemented using
simple integer arithmetic in hardware or software. Current
technology can compute such a function for each packet that
arrives at 20 Gbps or even higher [2].

To evaluate the quantity of data sent to the backend en-
gine, we first derive the size of a report packet. For a sam-
pled packet, we report raw header information of the packet
such as the source, the destination IP addresses and the TTL
field. We also add a 26-bit label of the packet [2] and the hash
value where the packet is sampled. Since the total number
of hash values ofhselection() is about105 as shown in Sec-
tion 4, we needdlog2(105)e = 17 bits to represent a hash
value. Thus, the size of a report packetlreport = (20 (IP
header)+4 + 4 + 1)× 8 + 26 + 17 = 275 bits. Finally, each
link sendsNsamp × lreport ≈ 653Kbps to the backend en-
gine. With 300 such links, the total report traffic consumes
less than2% of the link rate. Note that if multiple samples
are reported in a single IP packet, we can further reduce the
communication overhead.

In the backend engine, we maintainT−1 counters for each
router that is traversed by each flow, whereT is the length of
the path. With 1.7 million flows [4] and network diameter
of 20, we need up to1.7 × 20(20 − 1) × psamp ≈ 0.6 mil-
lion counters, which corresponds to several MB of memory.
For each sampled packetp, the backend engine reads counter
values ofp’s flow from memory. The memory of a flow is
indexed by using a hash functionhindex(x) = x mod 220.
hindex() has a 64-bit input (source and destination IP pair)
and a 20-bit output to accommodate a million flows. One of
the counters is incremented and the value is compared with
another counter value in the same flow. The new counter val-
ues are then stored back in memory. Load and store operations
in DRAM take around 60 nanoseconds each and it takes up to
100 cycles to computehindex(). Thus, such operations can
be processed by a current 1GHz processor in less than 300
nanoseconds, which is far less than the time we have for each
sample,1/(Nsamp ×Nrouter) ≈ 4.2 microseconds.

8. Conclusions

We presented SATS, a data plane method to detect ma-
licious routers. SATS uses Split Range Assignment, which
varies sampling ranges on each router, to maintain integrity
of the packet sampling process. Using simulation, we showed
that the probability that a malicious router can avoid detection
is less than 5% and even lower when new sampling ranges
are periodically reloaded onto the routers. SATS can be de-
ployed incrementally as most of the benefits of SATS can be
achieved when only 10% to 40% of the routers in a network

deploy SATS depending on the topology. Although SATS is
initially designed for a single administrative domain, we be-
lieve it can be extended to multiple non-cooperative domains
by sharing common hash values in border routers, without re-
vealing internal traffic measurement to an external network.
We leave this as future work.
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