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Abstract 
 

As a network evolves over time, multiple operators 

modify its configuration, without fully considering 

what has previously been done. Similar policies are 

defined more than once, and policies that become 

obsolete after a transition are left in the configuration. 

As a result, the network configuration becomes 

complicated and disorganized, escalating maintenance 

costs and operator faults. We present a method called 

NetPiler, which groups common policies by 

discovering a set of shared features and which uses the 

groupings for the configuration instead of using each 

individual policy. Such an approach removes 

redundancies and simplifies the configuration while 

preserving the intended behavior of the configuration. 

We apply NetPiler to the routing policy configurations 

from four different networks, and reduce more than 

50% of BGP communities and the related commands. 

In addition, we show that the reduced community 

definitions are sufficient to satisfy changes as the 

network evolves over nearly two years.  

 

 

1. Introduction 
 

Network configuration is a low-level, device-

specific task. To configure a network, one needs to 

configure each device in the network separately. There 

can be hundreds of devices, thus hundreds of 

configuration files, each with thousands of commands. 

Often, multiple files need to be modified to make a 

relatively minor change in the network. This requires 

the careful attention of operators since a change in one 

file can potentially affect other devices or even the 

whole network. These dependencies are spread across 

files of multiple devices, even in a small-sized network.  

As a network evolves, its configurations become 

difficult to understand and to debug. Patches are 

sometimes put into configuration files to temporarily 

deal with a problem, and they are forgotten and left in 

place after the problem is handled. Old configurations 

often remain to ensure the network operation will work 

until the transition is complete. Configurations are 

edited by multiple operators with different backgrounds 

and working styles. In addition, networks are often 

merged into a single network, complicating the 

combined configurations. Also, because of the low-

level nature of configuration commands, the same high-

level goal can be achieved in various ways in 

configurations. In other words, both technical and non-

technical issues can degrade the quality of a network’s 

configuration over time. 

As a result, companies spend more resources on the 

daily management and operations of their networks 

than on new IT services. In fact, one study has found 

that 80% of IT budgets in enterprise networks are used 

just to maintain the current operating environments [1]. 

Scheduled maintenance and upgrades can account for 

more than 30% of network outages in Tier-1 ISPs [2]. 

Operator errors are common and can account for more 

than 50% of failures in computer systems and networks 

[3][4].  

Our system, called NetPiler, transforms the network 

configuration into a more manageable configuration. 

We define a configuration as manageable if the 

configuration is short, and if it can be extended over 

time according to the changes of the network, with few 

modifications. In this process of transformation, 

NetPiler extracts the underlying functions and 

dependencies from the network configuration and puts 

them into a concise and system-independent format by 

reducing any redundancy (Section 3.2). From this 

format, NetPiler generates a new configuration that 

takes into account complex inter-device and intra-

device dependencies. We apply this technique to inter-

domain routing policy configurations in order to 

demonstrate NetPiler (Section 4). We evaluate the 

algorithm on four production networks – two national 

providers and two regional providers (Section 5). We 
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are able to reduce up to 70% of the respective 

commands. We also go over a few reduction types and 

show that such simplification does improve the 

manageability of the configuration (Section 5.3). 

Finally, we present a few ways to improve the 

algorithm (Section 6). 

 

2. Related Work 
 

There has been a significant amount of work done to 

help simplify network management. To the best of our 

knowledge, this paper is the first to consider reducing a 

network configuration so as to increase its 

manageability. [5][6] propose high-level configuration 

languages for specific parts of a network configuration. 

NetPiler finds unique clusters of elements that share 

certain properties (or implement common functions) in 

a network configuration. Description by element 

groups can simplify the network configuration, 

independent of the description language. Others have 

proposed new management architectures. The 4D 

architecture [7] has a central decision plane, and 

CONMan [8] exposes a simple and consistent interface 

to the management plane. Even with these architectures, 

we believe that our method of transforming a 

configuration into a simpler form would make the 

configuration easier to maintain. [9][10][11] identify 

potential errors in configurations by comparing them to 

a list of predefined rules. Although these tools are 

effective for the detection of particular types of errors, 

their use is tedious because the operators must list the 

possible errors and customize the tools to the changes 

of the network. Our tool is more proactive and is 

compatible with these approaches. We remove the 

complexity and redundancies in the configuration that 

can increase maintenance costs and thus operator 

mistakes.  

The goal of NetPiler differs from those of other 

optimization techniques found in VLSI CAD [12] and 

firewalls [13]. NetPiler transforms a configuration in 

order to increase the manageability and readability of 

the configuration for human operators. In contrast, the 

other optimization techniques are intended to speed up 

a program or to reduce the complexity of the compiled 

code, according to quantitative metrics. A manageable 

configuration for one aspect in the configuration may 

not be manageable for another aspect, and the 

generation of a manageable configuration requires 

domain knowledge about that aspect. Therefore, we do 

not attempt to generalize the method in NetPiler for all 

aspects. We show a way to enhance the general model 

for the inter-domain routing policy aspect (Section 4).  

 

3. NetPiler 
 

We first present an overview of NetPiler and show 

how we simplify a configuration for inter-domain 

routing policies and BGP communities in Section 3.1. 

We describe the details of NetPiler in Section 3.2 and 

its applications in Section 3.3. 

 

3.1. Overview 
 

We perform the following steps to transform a 

network configuration into another form. We first 

select the element in the configuration that is subject to 

the transformation. The element can be the ones that 

can be grouped, ranging from routes that can be 

grouped by routing policies to packets that can be 

grouped by firewall or QoS policies. We then parse the 

configuration with regard to the element and construct 

a graph model. The model is a bipartite graph with two 

partite sets, the set of instances I and the set of their 

properties P. An instance i
�

I is joined by an edge with 

a property p
�

P iff i has p. For example, when we 

consider firewall policies, i refers to a certain collection 

of packets (e.g., packets from subnet 1.1.1.0/24), and 

its property p refers to the actions associated with the 

packets as well as the locations where the actions take 

place (e.g., sample and count the packets at router R). 

We use a graph model instead of simple sets since each 

instance can have multiple properties such that some of 

the properties are properties of other instances as well. 

A graph is easier and more natural to represent the 

overlapping nature of the relationships. From the model, 

we identify distinct groups of instances that share 

common properties. Group A is comprised of a set of 

properties PA that characterize the group, and a set of 

instances IA, each of which has all the properties in PA. 

For example, we may identify a group of packets i1, i2, 

i3 that are disallowed into AS1. We may identify 

another group i4, i5, i6 that are allowed into AS1. This 

latter group of packets is tagged with IP precedence 

value 5 when forwarded to an external network AS1. If 

we denote the two groups A and B, IA={i1, i2, i3}, 

PA={discard at AS1}, IB={i4, i5, i6}, and PB={permit, 

set IP precedence 5 at AS1}. The two instance-

property sets show two distinct policies associated with 

packets. Finally, we generate a new configuration that 

uses the groups in the specification.  

Before we go into more detail, we start with a 

fictional scenario to illustrate what the scheme can do. 

The scenario includes routing policy configurations 

using the BGP community. We first present the 

background of inter-domain routing policies as well as 

the BGP community, and then the scenario. 
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AS1AS1

R1

Z1

Zx
Ri

Zx: a route filter on Ri, applied inbound to Ri

Zy: a route filter on Ri, applied outbound from Ri

Zy

AS2AS2

AS4AS4

AS5AS5

if P1, add A B

else if any, add A

if any, add Aif any, add A

Z5Z2

Z4

if A, permitif A, permit

if B, deny

else if A, permit

 

(a) The implementation of communities A and B in (b). ASes 3 and 

6 are not shown for simplicity. 

Comm. I: set of routes P: common actions & 

 locations 
A any from {1,2,3} Advertise to {4,5,6} 
B prefixes P1 from {2} 

prefixes P2 from {3} 

Do not advertise to {4} 

(b) Initial configuration 

Comm. I: set of routes P: common actions & 

 locations 
A any from {1,2,3,13} Advertise to {4,5,6} 
B prefixes P1 from {2} 

prefixes P2 from {3} 

Do not advertise to {4} 

C any from {7,8,9,13} Advertise to {4,5,6} 
D any from {1,2,3,7,8,9} Advertise to {4,5,6} 
E any from {1,2,3,7,8,9,13} Advertise to {10,11,12} 
F prefixes P1 from {2} 

prefixes P2 from {3} 

Do not advertise to {5,6} 

(c) Configuration after network evolution 

Comm. I: set of routes P: common actions & 

 Locations 
A’ any from {1,2,3,7,8,9,13} Advertise to 

{4,5,6,10,11,12} 
B’ prefixes P1 from {2} 

prefixes P2 from {3} 

Do not advertise to 

{4,5,6} 

(d) Simplified configuration after applying NetPiler 

Figure 1. An example scenario on inter-domain routing and BGP 

community. The italicized letters A through F represent BGP 

communities. P1 and P2 are particular sets of destination prefixes. 

The second column (i.e. the set of routes) represents instance sets, 

whereas the third column (i.e. common actions & locations) 

represents property sets. 

3.1.1. Inter-domain Routing and BGP Communities. 

The BGP is a de facto standard inter-domain routing 

protocol. BGP route advertisement is selective in that 

only a subset of routes received from an AS is 

distributed to other ASes. This is done mainly to 

implement a business relationship or to engineer traffic 

between ASes [14]. The selection of routes works by 

applying a route filter to the BGP session to/from the 

AS. A route filter has a structure similar to the “if-then-

else” chain in programming languages. It has a set of 

conditions followed by actions. The conditions and 

actions can be comprised of many different attributes in 

a BGP route such as AS-path and destination prefix. 

Among the attributes, the BGP community is one of the 

most widely used. 

A BGP community refers to a group of routes that 

share certain properties, and thus the same action is 

applied to the community. A community is encoded as 

a 32-bit field. A community influences the selection of 

routes by having its 32-bit string tagged to the set of 

route advertisements that belong to the community. If 

the 32-bit string matches the condition of a route filter, 

the required action is performed. A community 

implements a routing policy, which is in general 

described by a 3-tuple, (description of a set of routes, 

actions to be taken on the routes, a set of local/remote 

locations for the actions). For example, (All the 

prefixes received from AS1, re-advertise, outbound 

session to AS5) means that we want all the routes 

received from the inbound BGP session with AS1 to be 

re-announced to AS5. To implement the policy using a 

community, a community A is added to the routes by a 

route filter that is applied to the inbound direction of 

BGP sessions with AS1. The route filter has the 

condition “if any prefixes”, and the action “add A”. 

Another router filter in the outbound direction with 

AS5 will announce the routes to AS5 by the condition 

“if there exists community A”, and the action 

“then permit”. Fig. 1(a) illustrates an example 

implementation of the same policy. The shaded routers 

are in our administrative domain, and the other routers 

are in external networks. A line between two routers 

denotes that there exists a BGP session between the 

routers. A rounded rectangle represents a route filter. 

The arrow within the filter indicates the direction 

where the filter is applied. The actual content of the 

filter (i.e. an if-then-else chain) is connected with a 

dashed line. For example, router filter Z1 is applied to 

the routes advertised from AS1 towards R1. The filter 

adds community A to all the routes from AS1. These 

routes match the condition of Z5 and are re-announced 

to AS5. Every if-then-else chain has an implicit deny 

action at the end. Thus, all the other routes are 

disallowed by the default deny action. There is a 

variety of community usages, and more details can be 

found in [15]. 

 



 4 

3.1.2. Overview Example. In the scenario, we show 

how a network configuration becomes convoluted as 

communities are added and replaced ad hoc, and how 

we reduce the complexity. To better illustrate the 

routing policies in the network, we use the table as 

shown in Fig. 1(b). Each row represents a routing 

policy group implemented by a community. The letter 

on the first column is the community that implements 

the policy. The second and third columns represent 

instance sets and the respective property sets. For 

example, Community A implements the policy group, 

“all routes from ASes {1,2,3} are re-advertised to ASes 

{4,5,6}.” This group has three members in IA={any 

prefixes from ASes 1,2,3} and is characterized by 

PA={advertise to ASes 4,5,6}. P1 and P2 in community 

B represent certain collections of prefixes from ASes 2 

and 3, respectively. When there are multiple rules for 

the same route, the most specific rule precedes the 

other rules. For example, regarding the advertisement 

pattern to AS4, the second policy applies to prefixes P1 

from AS2, whereas the first policy applies to the rest of 

the routes from AS2. Thus, all routes from AS2 are 

advertised to AS4 except the prefixes P1. The actual 

implementation of the two policies is shown in Fig. 

1(a). For simplicity, we omit the sessions with ASes 

{3,6}. Route filter Z2 tags prefixes P1 with community 

B. Therefore, the prefixes are filtered out by Z4 and are 

not allowed into AS4.  

Fig. 1(b) shows the initial configuration in the 

scenario, and Fig. 1(c) shows the configuration after 

the network went through changes. We show only the 

two configurations in the evolution because of space 

limitations. �
Initially, there are six neighboring networks, ASes 

1 through 6. One community A is used to re-advertise 

routes from ASes {1,2,3} to ASes {4,5,6}.  �
 It is decided that IP prefix P1 from AS 2 and 

prefix P2 from AS 3 are not re-advertised to AS 4. 

Community B is set on the IP prefixes and matched by 

a new outbound statement towards AS 4 to deny the IP 

prefixes. This situation corresponds to Fig. 1(b). �
The network establishes a peering relationship 

with three new ASes {7,8,9}. Community C is defined 

to re-advertise routes from ASes {7,8,9} to ASes 

{4,5,6}. �
There is a merger of networks, and the operators 

decide to replace communities A and C with a new 

community D. In the procedure, As and Cs remain in 

the configuration in order to prevent any malfunction 

while the migration is incomplete. �
Three new neighbors, ASes {10,11,12} are added, 

and a new community E is defined so that the three new 

neighbors receive routes advertised from ASes 

{1,2,3,7,8,9}. �
A new neighbor session to AS 13 is negotiated by 

a new operator. Without being aware of community D, 

the operator applies two old communities A and C. 

Community E is also applied. �
IP prefixes P1 and P2 from ASes 2 and 3, 

respectively, are no longer re-advertised to ASes 5 and 

6 by a new community F. 

The configuration after the network extension (as 

shown in Fig.1(c)) is much more complex than its 

initial form with two communities A and B. There are 

six communities, each of which forms a certain routing 

policy group. NetPiler can re-cluster the policies into 

two distinct groups, and the result is shown in Fig. 1(d). 

Each of these two groups can be implemented by a 

single community. Note that this simplified 

configuration is functionally equivalent to the intended 

policies. In other words, any route received from any 

neighbor will take the same action at any location as in 

Fig.1(c). As illustrated by the example, our aim is to 

make the configuration more manageable by combining 

similar groups, eliminating unused groups, and better 

expressing the used groups. 

 

3.2. Instance-Property Model and 

Decomposition 
 

An element in a network configuration can be 

described with a set of properties associated with it. 

Our model captures such relationships between the 

element’s instances and its properties in order to 

identify groups of instances sharing common properties 

and to simplify the configuration through grouping. We 

call this model an instance-property model. In the 

model, a relation of an instance i having a property p is 

represented by two vertices i and p having an edge 

between them. In other words, our model is a bipartite 

graph with partite sets I, the set of instances, and P, the 

set of properties associated with the instances such that 

instance i
�

I is adjacent to a property p
�

P iff p 

characterizes i. Fig. 2(a) shows an instance-property 

model G with five instances and seven properties. 

Instance i1 has 4 properties {p1, p3, p4, p7} and thus is 

incident with 4 edges that are joined with {p1, p3, p4, 

p7}.  

It is clear that an instance-property model can be 

described by listing each relation (i,p) represented by 

an edge. However, our goal is not to separate each 

single edge. We partition the edges into sets, such that 

each set represents a distinct group of instances that 

share certain properties as a unit. We call such a 

partition a decomposition of the model. Grouping 



 5 

p1p1

p2p2

p3p3

p4p4

p5p5

p6p6

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

G

      

p1p1

p3p3

p4p4

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

p2p2

p5p5

i2i2

i4i4

p6p6

i3i3

i5i5

A

B

C

 

(a)   (b) 

Figure 2. A decomposition of an instance-property model G (as 

shown in (a)) into complete bipartite subgraphs A, B, and C (as 

shown in (b)).  

similar objects and representing the objects by group 

improve the manageability. We define a group as 

follows. Group A is a nonempty set of properties PA 

together with a set of instances IA ={i| i
�

IG , Pi = PA}. 

Pi = {p| p
�

PG , (i,p)
�

E(G)}. G denotes the instance-

property model and E(G) its edge set. Since in A, every 

instance in one partite set IA is adjacent to every 

property in the other partite set PA, a group is 

equivalent to a complete bipartite graph. Thus, 

partitioning G into groups is the same as decomposing 

G into complete bipartite subgraphs. Fig. 2(b) presents 

a decomposition of G in Fig. 2(a) into 3 complete 

bipartite graphs (groups), A, B, and C. If the instances 

are routes, then A, B, and C can represent “routes 

advertised from ASes {1,2,3,4,5}”, “routes received at 

router R1”, and “routes received at router R2”. Each 

group may have different properties such as “advertise 

to AS 6”, “advertise to AS 7”, and “prepend the AS n 

times in the AS-PATH attribute when the routes are 

advertised to AS 7”. Note that i2 belongs to both A and 

B. Such a membership is a single new group that 

inherits the properties from A with the addition of the 

properties from B. The decomposition of G is function-

preserving: we do not add or delete any edges in G, and 

thus the intended behavior of the configuration does 

not change although its specification does.  

Note that there are many ways to decompose G into 

groups. For example, G is also decomposable into three 

groups A
�

, B
�

, and C
�

 with their I and P sets as 

follows: IA

�
={i1}, PA

�
={p1, p3, p4, p7}, IB

�
={i2, i4}, 

PB

�
={p1, p2, p3, p4, p5, p7}, IC

�
={i3, i5}, and 

PC

�
={p1, p3, p4, p6, p7}. Of all possible 

decompositions, we look for the decomposition where 

each group is manageable (i.e. an operator can reuse 

the groups to specify new instances or to modify 

existing instances with or without slight modification in 

the group definitions, and the meaning of the groups is 

consistent so that it is straightforward to grasp the 

meaning of the groups.).  

A manageable decomposition for one type of 

element may not be manageable for another type of 

element. Thus, identification of a manageable 

decomposition requires domain knowledge about the 

instance. In Section 4, we suggest one method to find a 

manageable decomposition, especially for inter-domain 

routing policies and the BGP community.  

 

3.3. Applications of NetPiler 
 

In this section, we investigate which aspect of a 

network configuration can be simplified by NetPiler. 

There are cases where grouping is explicitly used with 

group ID. These cases include route tagging based on 

routing policies, packet marking/grouping based on 

QoS policies, and MPLS labeling based on destination 

prefixes/packet treatments. ACLs (Access Control List) 

in a network can also be grouped into distinct sets of 

policies. Since all routing/QoS/ACL policies are based 

on filters, which are essentially if-then-else chains, we 

can use the same technique as shown in Section 4 to 

identify instances and properties. The instance set I 

could be a set of routes/packets, and the property set P 

could be a set of actions on the routes/packets and 

locations of the actions. 

The routing policies and ACLs comprise a major 

portion of the network configurations in the observed 

networks (i.e. up to 70% of a configuration file), and 

they are modified frequently, often within 10 days of 

the previous changes [16]. In particular, the networks 

rely heavily on BGP communities to tag routes and 

control announcements. Therefore, we chose to present 

the application of NetPiler in BGP communities. BGP 

communities are particularly troublesome in large 

carriers. There are hundreds of different communities, 

and tens of these communities are used in each 

command line. Network configuration using large 

number of communities is tedious, difficult to 

understand, and prone to human errors. We observe 

numerous errors related to BGP communities in the 

networks that we study. We believe the application in 

BGP communities would better illustrate the benefits of 

our method. 

 We are currently working on extending the 

applications. For example, interface configurations can 

be grouped into “external interface class”, “interface 
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class facing neighbor N1”, and “interface class facing 

neighbor N2”. Such description is possible in JUNOS 

by using the group command [20].  

 

4. Demonstration with Communities 
 

4.1. Construction of Instance-Property Model 
 

At a high level, we construct the instance-property 

model for routing policies that are implemented by 

communities. We then decompose the model into 

groups such that each group represents a distinct 

routing policy as a unit and therefore is assigned to a 

different community.  

We identify an if-then-clause in a route filter as an 

instance. If we think of a community in terms of a 

group defined in Section 3.2, the members of the 

community (i.e. the instances of the community) are the 

routes tagged with the community. In a configuration, 

the routes are represented by sets of conditions in one 

or more route filters, possibly applied to different 

neighbors, such that each set is matched as a unit. One 

such set of conditions is equivalent to an if-then-clause. 

In Fig. 1(a), there are three if-then-clauses that 

represent instances of community A: i) all routes from 

AS1, ii) prefixes P1 from AS2, and iii) the rest of the 

prefixes from AS2.  

Similarly to instances, we identify an if-then-clause 

in a route filter as a property. In other words, each if-

then-clause will become an instance as well as a 

property. The properties of the community are 

local/remote locations where the routes are matched. 

These locations are associated with the actions that take 

place on the routes. In a configuration, the local/remote 

locations and the actions are represented by if-then-

clauses that match the community. In Fig. 1(a), there 

are two if-then-clauses that match community A, and 

they are applied outbound to AS4 and AS5.  

The edges of the instance-property model, 

relationships between instances and properties, are 

identified as follows. There is an edge between one if-

then-clause i and another if-then-clause p if the routes 

represented by i are matched by p via communities (i.e. 

if the communities attached by i match the condition in 

p). For example in Fig. 1(a), the routes received from 

AS1 have community A attached by the if-then-clause 

“if any, add A”. These routes match the if-then-

clause in filter Z5, “if A, permit”. Therefore, the two 

if-then-clauses are joined by an edge. For an edge (i,p), 

routes matched by i flow through p and the actions 

specified in p are taken on the routes. In the next 

section, we identify distinct policy groups that are 

represented by the dependencies among if-then-clauses, 

and we assign a community to each routing policy so 

that the community is used in its associated if-then-

clauses. 

 

4.2. Identifying Distinct Policies 
 

Once an instance-property model is obtained, there 

are many ways to decompose the model. Naive 

decomposition may lead to groups that are difficult to 

reuse. Thus, we develop a condition for each group to 

be manageable. Although the condition is further 

refined, we focus on the essence in this section. The 

extensions are presented later in Section 6. 

The condition is based on the observation that a 

routing policy described by a community generally 

involves a set of routes that require the same set of 

actions. For example, routes from all customers might 

be re-advertised to all the peers and providers. A few 

prefixes from some customers might be AS-prepended 

three times when re-advertised to other peers so that 

those routes are not preferred. Such different sets of 

routes are represented by instances in our model. Thus, 

in order to identify distinct sets of routes that cause 

certain actions in concert, we identify such sets of 

instances. 

We formalize the algorithm in Fig. 3 and present an 

example in Fig. 4. In a policy model G, we go over 

each property py and identify the set of instances Itmp(y) 

that are adjacent to py. Itmp(y) represents the set of 

routes that match the condition of py and thus are 

subject to the same action as described in py. Among all 

such sets, we draw distinct sets, I1 through IN. These 

sets represent distinct sets of routes that take the same 

action. Each Ix has its counterpart Px, {py: Itmp(y)=Ix}. 

For each pair (Ix, Px), all the edges between (Ix, Px) 

belong to the same group and thus are assigned to the 

same community. In Fig. 4, there are two distinct Ix’s 

that take the same actions as a unit, I1={i1} and I2={i1, 

i2, i3}. The corresponding Px’s are P1={p1} and P2={p2, 

p3}. The two routing policy groups use community A 

and B, respectively. The edges in the original 

configuration (a) and the reproduced configuration (d) 

are the same, and thus the transformation is function-

preserving. Note that each community (group) in the 

reproduced configuration has a consistent meaning. In 

fact, a community represents a “come-from” 

relationship: routes that come-from Ix take certain 

actions in Px as a unit. 

 

5. Evaluation 
 

We implement and evaluate our algorithm for the 

communities on configurations from four different 



 7 

ix      :  x-th instance 

py   :   y-th property  

G     :  Policy model. Gx,y = 1 if (ix, py) 
�

 E(G). Otherwise, Gx,y = 0. 

N    :  Number of new communities 

cx    :  x-th new community 

Ix    :  A set of instances that adds cx 

Px    :  A set of properties that match cx 

h( ) :  Hash function associated with a hash table H. If h(Itmp)=x > 0, 

Itmp is present in H, where Ix = Itmp. Otherwise, h(Itmp) = 0. 

 

Empty H. 

N = 0; 

for each property py  

 Itmp = �; 

 for each instance ix 

  if Gx,y = 1 then Itmp = Itmp

�
{ix}; 

 if h(Itmp) = 0 then {     // create a new community 

  N = N + 1;  h(Itmp) = N; 

  IN = Itmp;  PN = {py};  

 } else {Ph(Itmp) = Ph(Itmp)

�
{py};} 

 

Figure 3. Algorithm that identifies distinct policies based on the 

come-from relationship. 

i1 if …, add B C i1 if …, add B C p1 if C or E, …p1 if C or E, …

i2 if …, add A D i2 if …, add A D 

i3 if …, add A D i3 if …, add A D 

p2 if B or C or D, …p2 if B or C or D, …

p3 if B or C or D, …p3 if B or C or D, …    

i1 if …, add A B i1 if …, add A B p1 if A, …p1 if A, …

i2 if …, add B  i2 if …, add B  

i3 if …, add B  i3 if …, add B  

p2 if B, …p2 if B, …

p3 if B, …p3 if B, …  

(a)   (d) 

p1p1

p2p2

p3p3

i1i1

i2i2

i3i3

G

          

A

B

p1p1i1 i1 

p2p2

i1i1

i2i2

i3i3

p3p3

 

(b)   (c) 

Figure 4. An example of routing policies (as shown in (a)), the 

corresponding instance-property model (as shown in (b)), 

decomposition by the come-from relationship (as shown in (c)), and 

the reproduced routing policies (as shown in (d)). 

production networks. The evaluation is done in three 

steps. First, we assess the reduction in the configuration 

length. We use two complexity measures that are 

proven to have strong correlation with maintenance 

cost. Second, we examine the meanings of the policy 

groups before and after the transformation. For these 

two steps, we analyze a particular snapshot of each 

network between March and April 2006. Finally, we 

analyze monthly snapshots of network 1 and 2 for two 

years to see if communities generated by our algorithm 

for the first snapshot could be reused over time. As 

shown in Table 1: �
We reduce up to 90% of communities and 70% of 

community related commands. If we disregard 

communities that do not create any edges (Section 5.3), 

no reduction is possible for two networks either 

because there is a simple set of policies, their 

communities are well structured, or there have not been 

many changes. �
More than 70% of the communities are defined 

by the come-from policy. There are a few exceptions, 

and we address them in Section 6. �
Most new communities are shown to be reusable 

as the number of peering relationships grows by 25% 

over the two-year period. 

We describe implementation/experimental details in 

Section 5.1 and the two complexity measures in 

Section 5.2. We then present the details of our results 

in Section 5.3. 

 

5.1. Experimental Setup and Implementation 
 

First, we focus on the simplification and 

restructuring of internal BGP communities within one 

administrative domain. We do not consider 

communities that are intended for use by external 

networks. However, this idea can be extended to 

multiple domains in the same way. In addition, 

predefined standard communities such as no-export and 

no-advertise are not subject to our simplification 

process.  

Our implementation uses a configuration parser [9] 

developed for Cisco IOS and Juniper JUNOS 

commands. We parse routing policies related to 

communities and separate if-then-clauses into 

instances/properties in the format shown in Fig. 5. A 

property has a condition in Boolean logic since 

communities are matched based on Boolean operations 

(AND/OR/NOT). An instance has a list of communities 

attached by its corresponding if-clause. Although a 

community can be deleted as well, for simplicity we 

consider only the addition of communities. In the 

configurations from the four networks, we find that 

deletion of communities is rarely used, and it is only 

used to remove certain communities on routes received 

from/advertised to external networks. Therefore, 

deletion of such communities does not influence the 

operations of communities used within the 

administrative domain.  

Fig. 5 shows an instance-property model 

representation for a configlet of Cisco IOS. There are 

two route filters, from_dora and to_toto. We also 

show their instance-property model. Instance i1 and 

property p1 represent from_dora, whereas i2 and p2 

represent to_toto. The edge (i1, p2) indicates that 

routes redistributed through from_dora will match 

to_toto. Refer to our technical report [19] for details. 
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TABLE 1.  SUMMARY OF ANALYSIS 

Num. communities Num. LOC 
Index 

Before After Before After 

1 293 (113) 8 9003 (8419) 2036 

2 43 (4) 4 282 (184) 194 

3 45 (14) 10 2756 (1443) 1409 

4 11 (4) 4 227 (126) 126 

Network {1, 2} are regional providers, and Network {3, 4} are national providers. The 

number of routers are (44, 6, 13, 11) and the number of distinct external  peers are (133, 

39, 414, 77). The numbers in parentheses represent the numbers excluding dangling 

communities (as shown in Section 5.3)  that do not create any edge. 

Configuration in Cisco IOS syntax: 
 

01  neighbor 1.1.1.1 route-map from_dora in 
02  neighbor 2.2.2.2 route-map to_toto out 
03 
04  route-map from_dora permit 10 
05   match community LIST1 
06   set community 1:200 1:300 
07  ! 
08 
09  route-map to_toto permit 10 
10   match community LIST2 
11   set community 3:500 
12  ! 
13 
14  ip community-list LIST1 deny 2:444 
15  ip community-list LIST1 2:100 
16  ip community-list LIST2 1:200 1:300 
17  ip community-list LIST2 1:400 
 

Instance-Property Model Representation: 
 

i1 if …, add 1:200 1:300 

i2 if …, add 3:500i2 if …, add 3:500

p1 if (not 2:444) and 2:100, …p1 if (not 2:444) and 2:100, …

p2 if (1:200 and 1:300) or 1:400, …
 

Figure 5. BGP configuration in instance-property model 

representation. 

Note that an edge can also be created by other types 

of filters based on prefix or AS-path attributes. In that 

sense, this model can be extended to a layered model 

with edges that are made from communities, and which 

are elaborated by conditions involving prefixes, AS-

path, and so forth. We do not consider these additional 

conditions in this paper. However, we preserve the 

edges made from communities when reassigning 

communities. Therefore, the edges will be correctly 

elaborated by other conditions that are not considered 

in this process, and the underlying routing policies are 

left intact.  

 

5.2. Complexity Measures 
 

We use two measures, the number of communities 

and the number of LOC (Lines of Commands). 

Multiple studies validate their correlation with the 

number of faults and development/maintenance time 

required [17][18]. The number of communities 

measures the total number of distinct communities that 

are used internally within a network. This is analogous 

to the vocabulary size [17], a software complexity 

measure that counts the number of unique operators 

and operands. It reflects the size of search space when 

writing or reading a command. As it becomes larger, 

the operator has to consider and compare more options 

to configure a community, and the configuration 

becomes a more complex task. The number of LOC is 

the sum of the number of individual communities used 

in conditional/action clauses. This also has its 

counterpart, which counts the number of individual 

commands in software. The more places an operator 

needs to configure, the more chance to make mistakes. 

This is especially true when we configure communities, 

each of which can have dependencies and can impact 

tens to hundreds of BGP sessions [16]. Furthermore, 

our previous work [9] finds a number of community-

related errors, such as missing communities and using 

wrong communities in a network where each if-then-

clause consists of more than five communities on 

average.  

 

5.3. Results 
 

Table 1 shows decreases in both the number of 

communities and the number of LOC. The decrease is 

noticeable in Network 1 since it had been expanding as 

more networks were added over the span of the two 

years we studied and thus had gone through many 

changes in the past. Note that some redundancies are 

by design, and operators can always keep certain 

original communities from being restructured. The 

operators can either exclude the original communities 

from the analysis, or accept only a subset of the new 

communities. 

Each of the new communities either is equivalent to 

an original community or represents policies 

implemented by multiple communities in the original 

configuration. Some of the new communities 

implement business relationships among transits, peers, 

and customers, while others implement policies 

intended for traffic engineering. These are common 

relationships found in a network, and configurations 

concerning communities thus naturally can be reduced 

according to the unique units of these relationships in a 

network. 

Dangling Communities. The majority of 

communities that are removed by our algorithm (180, 

39, 31, and 7 communities from network 1, 2, 3, and 4, 

respectively) are either added in if-clauses but never 

matched anywhere, or matched but never added. We 

call these communities dangling communities since 

they refer to a certain group, but do not form any edges 

in the instance-property model. These communities are 

remains of old configurations when peering 
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relationships end. Others are defined by predicting later 

usage thus allowing operators to use the communities 

to deal with modification in peering relationships or 

unforeseen problems in the future. However, from our 

time-series analysis over a two-year period, we find 

that none of these communities had been modified for 

actual usage. These communities should be used only 

when they are needed. Lengthening the configuration 

with such communities might make the configuration 

harder to understand, maintain, and more prone to 

errors. 

Subset Communities. A few communities are 

removed since their functions are subsumed by those of 

other communities. In other words, the edges created 

by each of the removed communities are a subset of the 

edges created by another community. In one network, 

particular routes are re-advertised to a peer based on 

the following matching condition. 

if (A and C1) or (A and C2) or (A and C3) or … 

Our algorithm detects that wherever A is attached, 

one of the Ci’s is attached as well and thus is able to 

simplify the condition as “if A.”  

There are two possible reasons why such 

communities exist: i) when communities are defined ad 

hoc, the dependencies created by communities and the 

policies implemented previously are not fully 

considered, or ii) communities that are replaced by 

others are not properly removed.  

Combination of Communities. There are 

communities that can be combined although none of 

them are functionally subsumed by one another. Such 

communities either represent the same set of routes and 

match in different if-clauses, or involve different routes 

and match in the same if-clauses. For example, three 

communities are added by the same if-then clauses and 

thus represent the same set of routes. The communities 

are used so that the routes are not re-advertised to three 

different networks 1, 2, and 3, respectively. Our 

algorithm combines the three communities as one by 

matching and adding a single community instead of the 

three. Such combining does not limit the flexibility of 

routing policies as long as we deal with the same set of 

routes. If we no longer need to prevent the routes from 

being advertised to network 2, we can simply remove 

the single community from the corresponding if-clause. 

Equivalent Communities. Each of the other new 

communities (3, 4, 7, and 4 communities from network 

1, 2, 3, and 4, respectively) is equivalent to an original 

community. Although these communities do not 

contribute to the reduction, they do present an 

important implication as the combined communities. 

This implication is that the majority of routing policies 

comply with the come-from relationship. There are a 

few exceptions, which we deal with in Section 6. 

Time-series Analysis. Finally, we perform an 

analysis on snapshots that cover a two-year period 

(Network 1 and 2). The result is encouraging because it 

shows that configurations from a simple transformation 

can still be evolvable over time. During the period, the 

networks add and remove peering relationships 

periodically, and the overall number of relationships 

grows by roughly 25%. We find that the reduced set of 

communities is sufficient for this evolution. One or two 

communities are added and then deleted during the 

period to accommodate temporary peering 

relationships that require unique routing policies.  

 

6. Discussion 
 

In this section, we go over a few cases where the 

number of communities/LOC does not decrease when 

the new groupings reproduced by the come-from 

relationship disagree with the groupings in the original 

configurations. Since we believe that the original 

groupings could be more meaningful, we present 

methods that restructure the new groupings into the 

original groupings to improve the come-from 

relationship. More details can be found in our technical 

version of the paper [19]. 

Preference for Shorter Descriptions. A shorter 

description could be more intuitive than a longer one. 

For example, “All but routes from AS1 are to be 

advertised to customers.” is more concise than “Routes 

from ASes {2,3,4,…,n} are to be advertised to 

customers.” The come-from relationship produces the 

latter grouping while the original configuration uses the 

former. The latter requires a community A to be 

attached to the routes from each of the n-1 ASes 

{2,3,4,…n}. The community is matched by “if A, 

permit” when the routes are advertised to the 

customers. On the contrary, to implement the former 

grouping, we can use negation in the if-clause as in “if 

(not A), permit”. This requires the community A to 

be added only to the routes from AS1 and thus reduces 

the LOC. Although the situation that we describe here 

is not common, when it happens, we observe a 

tendency towards using smaller I and P sets or fewer 

communities.  

Finer Decomposition Based on Actions. We can 

further partition the policies resulting from the come-

from relationship in order to make their meanings 

clearer. Assume that a set of prefixes P1 learned from 

external peers is either dropped or receives a lower 

preference at two different remote route filters. The 

come-from relationship identifies the situation as one 
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single policy, “come-from P1,” since the prefixes 

always receive the same action as a unit. However, we 

can divide the policy into two policies: i) “come-from 

P1 to be dropped,” and ii) “come-from P1 to receive a 

lower preference.” If the latter is used, one can easily 

extend our algorithm so that come-from based policies 

are further partitioned according to the corresponding 

actions. 

 

7. Conclusion 
 

We present NetPiler, a way to transform a network 

configuration into a simpler form, which is easier to 

read and update. NetPiler groups policies into a set of 

distinct policies, thus removing any duplicate 

specifications, and it combines specifications that are 

unnecessarily decomposed. We demonstrate NetPiler 

for routing policies in four production networks, 

especially the policies implemented by the BGP 

community attribute. We show that up to 90% of 

communities and up to 70% of community-related 

commands are reduced. We also run NetPiler for 

snapshots over two years and show that the reduced set 

of communities can be reused and are sufficient for this 

evolution.  

The respective operators find NetPiler helpful for 

managing and understanding their network 

configurations. The strength of NetPiler is not only that 

it helps change the existing configurations, but it also 

represents the configurations in concise manners, thus 

paving a way to improve the readability of the 

configurations. NetPiler simplifies hundreds of policies 

into roughly ten policies, and the operators understand 

such a representation better than the original 

configurations. This representation also leads the 

operators to identify policies that are not intended or 

misconfigured. Thus, we believe that NetPiler can 

potentially reduce operator mistakes as well as 

maintenance costs, making the network more reliable 

and dependable. Finally, we hope to conduct user 

studies that will involve many operators of various skill 

levels to see if the resulting configuration files are more 

manageable.  
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