
Improving Dependability of Network Configuration through Policy

Classification

Sihyung Lee Tina Wong Hyong S. Kim

Carnegie Mellon University

{sihyunglee, tinawong, hskim}@cmu.edu

Abstract

As a network evolves over time, multiple operators

modify its configuration, without fully considering

what has previously been done. Similar policies are

defined more than once, and policies that become

obsolete after a transition are left in the configuration.

As a result, the network configuration becomes

complicated and disorganized, escalating maintenance

costs and operator faults. We present a method called

NetPiler, which groups common policies by

discovering a set of shared features and which uses the

groupings for the configuration instead of using each

individual policy. Such an approach removes

redundancies and simplifies the configuration while

preserving the intended behavior of the configuration.

We apply NetPiler to the routing policy configurations

from four different networks, and reduce more than

50% of BGP communities and the related commands.

In addition, we show that the reduced community

definitions are sufficient to satisfy changes as the

network evolves over nearly two years.

1. Introduction

Network configuration is a low-level, device-

specific task. To configure a network, one needs to

configure each device in the network separately. There

can be hundreds of devices, thus hundreds of

configuration files, each with thousands of commands.

Often, multiple files need to be modified to make a

relatively minor change in the network. This requires

the careful attention of operators since a change in one

file can potentially affect other devices or even the

whole network. These dependencies are spread across

files of multiple devices, even in a small-sized network.

As a network evolves, its configurations become

difficult to understand and to debug. Patches are

sometimes put into configuration files to temporarily

deal with a problem, and they are forgotten and left in

place after the problem is handled. Old configurations

often remain to ensure the network operation will work

until the transition is complete. Configurations are

edited by multiple operators with different backgrounds

and working styles. In addition, networks are often

merged into a single network, complicating the

combined configurations. Also, because of the low-

level nature of configuration commands, the same high-

level goal can be achieved in various ways in

configurations. In other words, both technical and non-

technical issues can degrade the quality of a network’s

configuration over time.

As a result, companies spend more resources on the

daily management and operations of their networks

than on new IT services. In fact, one study has found

that 80% of IT budgets in enterprise networks are used

just to maintain the current operating environments [1].

Scheduled maintenance and upgrades can account for

more than 30% of network outages in Tier-1 ISPs [2].

Operator errors are common and can account for more

than 50% of failures in computer systems and networks

[3][4].

Our system, called NetPiler, transforms the network

configuration into a more manageable configuration.

We define a configuration as manageable if the

configuration is short, and if it can be extended over

time according to the changes of the network, with few

modifications. In this process of transformation,

NetPiler extracts the underlying functions and

dependencies from the network configuration and puts

them into a concise and system-independent format by

reducing any redundancy (Section 3.2). From this

format, NetPiler generates a new configuration that

takes into account complex inter-device and intra-

device dependencies. We apply this technique to inter-

domain routing policy configurations in order to

demonstrate NetPiler (Section 4). We evaluate the

algorithm on four production networks – two national

providers and two regional providers (Section 5). We

 2

are able to reduce up to 70% of the respective

commands. We also go over a few reduction types and

show that such simplification does improve the

manageability of the configuration (Section 5.3).

Finally, we present a few ways to improve the

algorithm (Section 6).

2. Related Work

There has been a significant amount of work done to

help simplify network management. To the best of our

knowledge, this paper is the first to consider reducing a

network configuration so as to increase its

manageability. [5][6] propose high-level configuration

languages for specific parts of a network configuration.

NetPiler finds unique clusters of elements that share

certain properties (or implement common functions) in

a network configuration. Description by element

groups can simplify the network configuration,

independent of the description language. Others have

proposed new management architectures. The 4D

architecture [7] has a central decision plane, and

CONMan [8] exposes a simple and consistent interface

to the management plane. Even with these architectures,

we believe that our method of transforming a

configuration into a simpler form would make the

configuration easier to maintain. [9][10][11] identify

potential errors in configurations by comparing them to

a list of predefined rules. Although these tools are

effective for the detection of particular types of errors,

their use is tedious because the operators must list the

possible errors and customize the tools to the changes

of the network. Our tool is more proactive and is

compatible with these approaches. We remove the

complexity and redundancies in the configuration that

can increase maintenance costs and thus operator

mistakes.

The goal of NetPiler differs from those of other

optimization techniques found in VLSI CAD [12] and

firewalls [13]. NetPiler transforms a configuration in

order to increase the manageability and readability of

the configuration for human operators. In contrast, the

other optimization techniques are intended to speed up

a program or to reduce the complexity of the compiled

code, according to quantitative metrics. A manageable

configuration for one aspect in the configuration may

not be manageable for another aspect, and the

generation of a manageable configuration requires

domain knowledge about that aspect. Therefore, we do

not attempt to generalize the method in NetPiler for all

aspects. We show a way to enhance the general model

for the inter-domain routing policy aspect (Section 4).

3. NetPiler

We first present an overview of NetPiler and show

how we simplify a configuration for inter-domain

routing policies and BGP communities in Section 3.1.

We describe the details of NetPiler in Section 3.2 and

its applications in Section 3.3.

3.1. Overview

We perform the following steps to transform a

network configuration into another form. We first

select the element in the configuration that is subject to

the transformation. The element can be the ones that

can be grouped, ranging from routes that can be

grouped by routing policies to packets that can be

grouped by firewall or QoS policies. We then parse the

configuration with regard to the element and construct

a graph model. The model is a bipartite graph with two

partite sets, the set of instances I and the set of their

properties P. An instance i
�

I is joined by an edge with

a property p
�

P iff i has p. For example, when we

consider firewall policies, i refers to a certain collection

of packets (e.g., packets from subnet 1.1.1.0/24), and

its property p refers to the actions associated with the

packets as well as the locations where the actions take

place (e.g., sample and count the packets at router R).

We use a graph model instead of simple sets since each

instance can have multiple properties such that some of

the properties are properties of other instances as well.

A graph is easier and more natural to represent the

overlapping nature of the relationships. From the model,

we identify distinct groups of instances that share

common properties. Group A is comprised of a set of

properties PA that characterize the group, and a set of

instances IA, each of which has all the properties in PA.

For example, we may identify a group of packets i1, i2,

i3 that are disallowed into AS1. We may identify

another group i4, i5, i6 that are allowed into AS1. This

latter group of packets is tagged with IP precedence

value 5 when forwarded to an external network AS1. If

we denote the two groups A and B, IA={i1, i2, i3},

PA={discard at AS1}, IB={i4, i5, i6}, and PB={permit,

set IP precedence 5 at AS1}. The two instance-

property sets show two distinct policies associated with

packets. Finally, we generate a new configuration that

uses the groups in the specification.

Before we go into more detail, we start with a

fictional scenario to illustrate what the scheme can do.

The scenario includes routing policy configurations

using the BGP community. We first present the

background of inter-domain routing policies as well as

the BGP community, and then the scenario.

 3

AS1AS1

R1

Z1

Zx
Ri

Zx: a route filter on Ri, applied inbound to Ri

Zy: a route filter on Ri, applied outbound from Ri

Zy

AS2AS2

AS4AS4

AS5AS5

if P1, add A B

else if any, add A

if any, add Aif any, add A

Z5Z2

Z4

if A, permitif A, permit

if B, deny

else if A, permit

(a) The implementation of communities A and B in (b). ASes 3 and

6 are not shown for simplicity.

Comm. I: set of routes P: common actions &

 locations
A any from {1,2,3} Advertise to {4,5,6}
B prefixes P1 from {2}

prefixes P2 from {3}

Do not advertise to {4}

(b) Initial configuration

Comm. I: set of routes P: common actions &

 locations
A any from {1,2,3,13} Advertise to {4,5,6}
B prefixes P1 from {2}

prefixes P2 from {3}

Do not advertise to {4}

C any from {7,8,9,13} Advertise to {4,5,6}
D any from {1,2,3,7,8,9} Advertise to {4,5,6}
E any from {1,2,3,7,8,9,13} Advertise to {10,11,12}
F prefixes P1 from {2}

prefixes P2 from {3}

Do not advertise to {5,6}

(c) Configuration after network evolution

Comm. I: set of routes P: common actions &

 Locations
A’ any from {1,2,3,7,8,9,13} Advertise to

{4,5,6,10,11,12}
B’ prefixes P1 from {2}

prefixes P2 from {3}

Do not advertise to

{4,5,6}

(d) Simplified configuration after applying NetPiler

Figure 1. An example scenario on inter-domain routing and BGP

community. The italicized letters A through F represent BGP

communities. P1 and P2 are particular sets of destination prefixes.

The second column (i.e. the set of routes) represents instance sets,

whereas the third column (i.e. common actions & locations)

represents property sets.

3.1.1. Inter-domain Routing and BGP Communities.

The BGP is a de facto standard inter-domain routing

protocol. BGP route advertisement is selective in that

only a subset of routes received from an AS is

distributed to other ASes. This is done mainly to

implement a business relationship or to engineer traffic

between ASes [14]. The selection of routes works by

applying a route filter to the BGP session to/from the

AS. A route filter has a structure similar to the “if-then-

else” chain in programming languages. It has a set of

conditions followed by actions. The conditions and

actions can be comprised of many different attributes in

a BGP route such as AS-path and destination prefix.

Among the attributes, the BGP community is one of the

most widely used.

A BGP community refers to a group of routes that

share certain properties, and thus the same action is

applied to the community. A community is encoded as

a 32-bit field. A community influences the selection of

routes by having its 32-bit string tagged to the set of

route advertisements that belong to the community. If

the 32-bit string matches the condition of a route filter,

the required action is performed. A community

implements a routing policy, which is in general

described by a 3-tuple, (description of a set of routes,

actions to be taken on the routes, a set of local/remote

locations for the actions). For example, (All the

prefixes received from AS1, re-advertise, outbound

session to AS5) means that we want all the routes

received from the inbound BGP session with AS1 to be

re-announced to AS5. To implement the policy using a

community, a community A is added to the routes by a

route filter that is applied to the inbound direction of

BGP sessions with AS1. The route filter has the

condition “if any prefixes”, and the action “add A”.

Another router filter in the outbound direction with

AS5 will announce the routes to AS5 by the condition

“if there exists community A”, and the action

“then permit”. Fig. 1(a) illustrates an example

implementation of the same policy. The shaded routers

are in our administrative domain, and the other routers

are in external networks. A line between two routers

denotes that there exists a BGP session between the

routers. A rounded rectangle represents a route filter.

The arrow within the filter indicates the direction

where the filter is applied. The actual content of the

filter (i.e. an if-then-else chain) is connected with a

dashed line. For example, router filter Z1 is applied to

the routes advertised from AS1 towards R1. The filter

adds community A to all the routes from AS1. These

routes match the condition of Z5 and are re-announced

to AS5. Every if-then-else chain has an implicit deny

action at the end. Thus, all the other routes are

disallowed by the default deny action. There is a

variety of community usages, and more details can be

found in [15].

 4

3.1.2. Overview Example. In the scenario, we show

how a network configuration becomes convoluted as

communities are added and replaced ad hoc, and how

we reduce the complexity. To better illustrate the

routing policies in the network, we use the table as

shown in Fig. 1(b). Each row represents a routing

policy group implemented by a community. The letter

on the first column is the community that implements

the policy. The second and third columns represent

instance sets and the respective property sets. For

example, Community A implements the policy group,

“all routes from ASes {1,2,3} are re-advertised to ASes

{4,5,6}.” This group has three members in IA={any

prefixes from ASes 1,2,3} and is characterized by

PA={advertise to ASes 4,5,6}. P1 and P2 in community

B represent certain collections of prefixes from ASes 2

and 3, respectively. When there are multiple rules for

the same route, the most specific rule precedes the

other rules. For example, regarding the advertisement

pattern to AS4, the second policy applies to prefixes P1

from AS2, whereas the first policy applies to the rest of

the routes from AS2. Thus, all routes from AS2 are

advertised to AS4 except the prefixes P1. The actual

implementation of the two policies is shown in Fig.

1(a). For simplicity, we omit the sessions with ASes

{3,6}. Route filter Z2 tags prefixes P1 with community

B. Therefore, the prefixes are filtered out by Z4 and are

not allowed into AS4.

Fig. 1(b) shows the initial configuration in the

scenario, and Fig. 1(c) shows the configuration after

the network went through changes. We show only the

two configurations in the evolution because of space

limitations. �
Initially, there are six neighboring networks, ASes

1 through 6. One community A is used to re-advertise

routes from ASes {1,2,3} to ASes {4,5,6}. �
 It is decided that IP prefix P1 from AS 2 and

prefix P2 from AS 3 are not re-advertised to AS 4.

Community B is set on the IP prefixes and matched by

a new outbound statement towards AS 4 to deny the IP

prefixes. This situation corresponds to Fig. 1(b). �
The network establishes a peering relationship

with three new ASes {7,8,9}. Community C is defined

to re-advertise routes from ASes {7,8,9} to ASes

{4,5,6}. �
There is a merger of networks, and the operators

decide to replace communities A and C with a new

community D. In the procedure, As and Cs remain in

the configuration in order to prevent any malfunction

while the migration is incomplete. �
Three new neighbors, ASes {10,11,12} are added,

and a new community E is defined so that the three new

neighbors receive routes advertised from ASes

{1,2,3,7,8,9}. �
A new neighbor session to AS 13 is negotiated by

a new operator. Without being aware of community D,

the operator applies two old communities A and C.

Community E is also applied. �
IP prefixes P1 and P2 from ASes 2 and 3,

respectively, are no longer re-advertised to ASes 5 and

6 by a new community F.

The configuration after the network extension (as

shown in Fig.1(c)) is much more complex than its

initial form with two communities A and B. There are

six communities, each of which forms a certain routing

policy group. NetPiler can re-cluster the policies into

two distinct groups, and the result is shown in Fig. 1(d).

Each of these two groups can be implemented by a

single community. Note that this simplified

configuration is functionally equivalent to the intended

policies. In other words, any route received from any

neighbor will take the same action at any location as in

Fig.1(c). As illustrated by the example, our aim is to

make the configuration more manageable by combining

similar groups, eliminating unused groups, and better

expressing the used groups.

3.2. Instance-Property Model and

Decomposition

An element in a network configuration can be

described with a set of properties associated with it.

Our model captures such relationships between the

element’s instances and its properties in order to

identify groups of instances sharing common properties

and to simplify the configuration through grouping. We

call this model an instance-property model. In the

model, a relation of an instance i having a property p is

represented by two vertices i and p having an edge

between them. In other words, our model is a bipartite

graph with partite sets I, the set of instances, and P, the

set of properties associated with the instances such that

instance i
�

I is adjacent to a property p
�

P iff p

characterizes i. Fig. 2(a) shows an instance-property

model G with five instances and seven properties.

Instance i1 has 4 properties {p1, p3, p4, p7} and thus is

incident with 4 edges that are joined with {p1, p3, p4,

p7}.

It is clear that an instance-property model can be

described by listing each relation (i,p) represented by

an edge. However, our goal is not to separate each

single edge. We partition the edges into sets, such that

each set represents a distinct group of instances that

share certain properties as a unit. We call such a

partition a decomposition of the model. Grouping

 5

p1p1

p2p2

p3p3

p4p4

p5p5

p6p6

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

G

p1p1

p3p3

p4p4

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

p2p2

p5p5

i2i2

i4i4

p6p6

i3i3

i5i5

A

B

C

(a) (b)

Figure 2. A decomposition of an instance-property model G (as

shown in (a)) into complete bipartite subgraphs A, B, and C (as

shown in (b)).

similar objects and representing the objects by group

improve the manageability. We define a group as

follows. Group A is a nonempty set of properties PA

together with a set of instances IA ={i| i
�

IG , Pi = PA}.

Pi = {p| p
�

PG , (i,p)
�

E(G)}. G denotes the instance-

property model and E(G) its edge set. Since in A, every

instance in one partite set IA is adjacent to every

property in the other partite set PA, a group is

equivalent to a complete bipartite graph. Thus,

partitioning G into groups is the same as decomposing

G into complete bipartite subgraphs. Fig. 2(b) presents

a decomposition of G in Fig. 2(a) into 3 complete

bipartite graphs (groups), A, B, and C. If the instances

are routes, then A, B, and C can represent “routes

advertised from ASes {1,2,3,4,5}”, “routes received at

router R1”, and “routes received at router R2”. Each

group may have different properties such as “advertise

to AS 6”, “advertise to AS 7”, and “prepend the AS n

times in the AS-PATH attribute when the routes are

advertised to AS 7”. Note that i2 belongs to both A and

B. Such a membership is a single new group that

inherits the properties from A with the addition of the

properties from B. The decomposition of G is function-

preserving: we do not add or delete any edges in G, and

thus the intended behavior of the configuration does

not change although its specification does.

Note that there are many ways to decompose G into

groups. For example, G is also decomposable into three

groups A
�

, B
�

, and C
�

 with their I and P sets as

follows: IA

�
={i1}, PA

�
={p1, p3, p4, p7}, IB

�
={i2, i4},

PB

�
={p1, p2, p3, p4, p5, p7}, IC

�
={i3, i5}, and

PC

�
={p1, p3, p4, p6, p7}. Of all possible

decompositions, we look for the decomposition where

each group is manageable (i.e. an operator can reuse

the groups to specify new instances or to modify

existing instances with or without slight modification in

the group definitions, and the meaning of the groups is

consistent so that it is straightforward to grasp the

meaning of the groups.).

A manageable decomposition for one type of

element may not be manageable for another type of

element. Thus, identification of a manageable

decomposition requires domain knowledge about the

instance. In Section 4, we suggest one method to find a

manageable decomposition, especially for inter-domain

routing policies and the BGP community.

3.3. Applications of NetPiler

In this section, we investigate which aspect of a

network configuration can be simplified by NetPiler.

There are cases where grouping is explicitly used with

group ID. These cases include route tagging based on

routing policies, packet marking/grouping based on

QoS policies, and MPLS labeling based on destination

prefixes/packet treatments. ACLs (Access Control List)

in a network can also be grouped into distinct sets of

policies. Since all routing/QoS/ACL policies are based

on filters, which are essentially if-then-else chains, we

can use the same technique as shown in Section 4 to

identify instances and properties. The instance set I

could be a set of routes/packets, and the property set P

could be a set of actions on the routes/packets and

locations of the actions.

The routing policies and ACLs comprise a major

portion of the network configurations in the observed

networks (i.e. up to 70% of a configuration file), and

they are modified frequently, often within 10 days of

the previous changes [16]. In particular, the networks

rely heavily on BGP communities to tag routes and

control announcements. Therefore, we chose to present

the application of NetPiler in BGP communities. BGP

communities are particularly troublesome in large

carriers. There are hundreds of different communities,

and tens of these communities are used in each

command line. Network configuration using large

number of communities is tedious, difficult to

understand, and prone to human errors. We observe

numerous errors related to BGP communities in the

networks that we study. We believe the application in

BGP communities would better illustrate the benefits of

our method.

 We are currently working on extending the

applications. For example, interface configurations can

be grouped into “external interface class”, “interface

 6

class facing neighbor N1”, and “interface class facing

neighbor N2”. Such description is possible in JUNOS

by using the group command [20].

4. Demonstration with Communities

4.1. Construction of Instance-Property Model

At a high level, we construct the instance-property

model for routing policies that are implemented by

communities. We then decompose the model into

groups such that each group represents a distinct

routing policy as a unit and therefore is assigned to a

different community.

We identify an if-then-clause in a route filter as an

instance. If we think of a community in terms of a

group defined in Section 3.2, the members of the

community (i.e. the instances of the community) are the

routes tagged with the community. In a configuration,

the routes are represented by sets of conditions in one

or more route filters, possibly applied to different

neighbors, such that each set is matched as a unit. One

such set of conditions is equivalent to an if-then-clause.

In Fig. 1(a), there are three if-then-clauses that

represent instances of community A: i) all routes from

AS1, ii) prefixes P1 from AS2, and iii) the rest of the

prefixes from AS2.

Similarly to instances, we identify an if-then-clause

in a route filter as a property. In other words, each if-

then-clause will become an instance as well as a

property. The properties of the community are

local/remote locations where the routes are matched.

These locations are associated with the actions that take

place on the routes. In a configuration, the local/remote

locations and the actions are represented by if-then-

clauses that match the community. In Fig. 1(a), there

are two if-then-clauses that match community A, and

they are applied outbound to AS4 and AS5.

The edges of the instance-property model,

relationships between instances and properties, are

identified as follows. There is an edge between one if-

then-clause i and another if-then-clause p if the routes

represented by i are matched by p via communities (i.e.

if the communities attached by i match the condition in

p). For example in Fig. 1(a), the routes received from

AS1 have community A attached by the if-then-clause

“if any, add A”. These routes match the if-then-

clause in filter Z5, “if A, permit”. Therefore, the two

if-then-clauses are joined by an edge. For an edge (i,p),

routes matched by i flow through p and the actions

specified in p are taken on the routes. In the next

section, we identify distinct policy groups that are

represented by the dependencies among if-then-clauses,

and we assign a community to each routing policy so

that the community is used in its associated if-then-

clauses.

4.2. Identifying Distinct Policies

Once an instance-property model is obtained, there

are many ways to decompose the model. Naive

decomposition may lead to groups that are difficult to

reuse. Thus, we develop a condition for each group to

be manageable. Although the condition is further

refined, we focus on the essence in this section. The

extensions are presented later in Section 6.

The condition is based on the observation that a

routing policy described by a community generally

involves a set of routes that require the same set of

actions. For example, routes from all customers might

be re-advertised to all the peers and providers. A few

prefixes from some customers might be AS-prepended

three times when re-advertised to other peers so that

those routes are not preferred. Such different sets of

routes are represented by instances in our model. Thus,

in order to identify distinct sets of routes that cause

certain actions in concert, we identify such sets of

instances.

We formalize the algorithm in Fig. 3 and present an

example in Fig. 4. In a policy model G, we go over

each property py and identify the set of instances Itmp(y)

that are adjacent to py. Itmp(y) represents the set of

routes that match the condition of py and thus are

subject to the same action as described in py. Among all

such sets, we draw distinct sets, I1 through IN. These

sets represent distinct sets of routes that take the same

action. Each Ix has its counterpart Px, {py: Itmp(y)=Ix}.

For each pair (Ix, Px), all the edges between (Ix, Px)

belong to the same group and thus are assigned to the

same community. In Fig. 4, there are two distinct Ix’s

that take the same actions as a unit, I1={i1} and I2={i1,

i2, i3}. The corresponding Px’s are P1={p1} and P2={p2,

p3}. The two routing policy groups use community A

and B, respectively. The edges in the original

configuration (a) and the reproduced configuration (d)

are the same, and thus the transformation is function-

preserving. Note that each community (group) in the

reproduced configuration has a consistent meaning. In

fact, a community represents a “come-from”

relationship: routes that come-from Ix take certain

actions in Px as a unit.

5. Evaluation

We implement and evaluate our algorithm for the

communities on configurations from four different

 7

ix : x-th instance

py : y-th property

G : Policy model. Gx,y = 1 if (ix, py)
�

 E(G). Otherwise, Gx,y = 0.

N : Number of new communities

cx : x-th new community

Ix : A set of instances that adds cx

Px : A set of properties that match cx

h() : Hash function associated with a hash table H. If h(Itmp)=x > 0,

Itmp is present in H, where Ix = Itmp. Otherwise, h(Itmp) = 0.

Empty H.

N = 0;

for each property py

 Itmp = �;

 for each instance ix

 if Gx,y = 1 then Itmp = Itmp

�
{ix};

 if h(Itmp) = 0 then { // create a new community

 N = N + 1; h(Itmp) = N;

 IN = Itmp; PN = {py};

 } else {Ph(Itmp) = Ph(Itmp)

�
{py};}

Figure 3. Algorithm that identifies distinct policies based on the

come-from relationship.

i1 if …, add B C i1 if …, add B C p1 if C or E, …p1 if C or E, …

i2 if …, add A D i2 if …, add A D

i3 if …, add A D i3 if …, add A D

p2 if B or C or D, …p2 if B or C or D, …

p3 if B or C or D, …p3 if B or C or D, …

i1 if …, add A B i1 if …, add A B p1 if A, …p1 if A, …

i2 if …, add B i2 if …, add B

i3 if …, add B i3 if …, add B

p2 if B, …p2 if B, …

p3 if B, …p3 if B, …

(a) (d)

p1p1

p2p2

p3p3

i1i1

i2i2

i3i3

G

A

B

p1p1i1 i1

p2p2

i1i1

i2i2

i3i3

p3p3

(b) (c)

Figure 4. An example of routing policies (as shown in (a)), the

corresponding instance-property model (as shown in (b)),

decomposition by the come-from relationship (as shown in (c)), and

the reproduced routing policies (as shown in (d)).

production networks. The evaluation is done in three

steps. First, we assess the reduction in the configuration

length. We use two complexity measures that are

proven to have strong correlation with maintenance

cost. Second, we examine the meanings of the policy

groups before and after the transformation. For these

two steps, we analyze a particular snapshot of each

network between March and April 2006. Finally, we

analyze monthly snapshots of network 1 and 2 for two

years to see if communities generated by our algorithm

for the first snapshot could be reused over time. As

shown in Table 1: �
We reduce up to 90% of communities and 70% of

community related commands. If we disregard

communities that do not create any edges (Section 5.3),

no reduction is possible for two networks either

because there is a simple set of policies, their

communities are well structured, or there have not been

many changes. �
More than 70% of the communities are defined

by the come-from policy. There are a few exceptions,

and we address them in Section 6. �
Most new communities are shown to be reusable

as the number of peering relationships grows by 25%

over the two-year period.

We describe implementation/experimental details in

Section 5.1 and the two complexity measures in

Section 5.2. We then present the details of our results

in Section 5.3.

5.1. Experimental Setup and Implementation

First, we focus on the simplification and

restructuring of internal BGP communities within one

administrative domain. We do not consider

communities that are intended for use by external

networks. However, this idea can be extended to

multiple domains in the same way. In addition,

predefined standard communities such as no-export and

no-advertise are not subject to our simplification

process.

Our implementation uses a configuration parser [9]

developed for Cisco IOS and Juniper JUNOS

commands. We parse routing policies related to

communities and separate if-then-clauses into

instances/properties in the format shown in Fig. 5. A

property has a condition in Boolean logic since

communities are matched based on Boolean operations

(AND/OR/NOT). An instance has a list of communities

attached by its corresponding if-clause. Although a

community can be deleted as well, for simplicity we

consider only the addition of communities. In the

configurations from the four networks, we find that

deletion of communities is rarely used, and it is only

used to remove certain communities on routes received

from/advertised to external networks. Therefore,

deletion of such communities does not influence the

operations of communities used within the

administrative domain.

Fig. 5 shows an instance-property model

representation for a configlet of Cisco IOS. There are

two route filters, from_dora and to_toto. We also

show their instance-property model. Instance i1 and

property p1 represent from_dora, whereas i2 and p2

represent to_toto. The edge (i1, p2) indicates that

routes redistributed through from_dora will match

to_toto. Refer to our technical report [19] for details.

 8

TABLE 1. SUMMARY OF ANALYSIS

Num. communities Num. LOC
Index

Before After Before After

1 293 (113) 8 9003 (8419) 2036

2 43 (4) 4 282 (184) 194

3 45 (14) 10 2756 (1443) 1409

4 11 (4) 4 227 (126) 126

Network {1, 2} are regional providers, and Network {3, 4} are national providers. The

number of routers are (44, 6, 13, 11) and the number of distinct external peers are (133,

39, 414, 77). The numbers in parentheses represent the numbers excluding dangling

communities (as shown in Section 5.3) that do not create any edge.

Configuration in Cisco IOS syntax:

01 neighbor 1.1.1.1 route-map from_dora in
02 neighbor 2.2.2.2 route-map to_toto out
03
04 route-map from_dora permit 10
05 match community LIST1
06 set community 1:200 1:300
07 !
08
09 route-map to_toto permit 10
10 match community LIST2
11 set community 3:500
12 !
13
14 ip community-list LIST1 deny 2:444
15 ip community-list LIST1 2:100
16 ip community-list LIST2 1:200 1:300
17 ip community-list LIST2 1:400

Instance-Property Model Representation:

i1 if …, add 1:200 1:300

i2 if …, add 3:500i2 if …, add 3:500

p1 if (not 2:444) and 2:100, …p1 if (not 2:444) and 2:100, …

p2 if (1:200 and 1:300) or 1:400, …

Figure 5. BGP configuration in instance-property model

representation.

Note that an edge can also be created by other types

of filters based on prefix or AS-path attributes. In that

sense, this model can be extended to a layered model

with edges that are made from communities, and which

are elaborated by conditions involving prefixes, AS-

path, and so forth. We do not consider these additional

conditions in this paper. However, we preserve the

edges made from communities when reassigning

communities. Therefore, the edges will be correctly

elaborated by other conditions that are not considered

in this process, and the underlying routing policies are

left intact.

5.2. Complexity Measures

We use two measures, the number of communities

and the number of LOC (Lines of Commands).

Multiple studies validate their correlation with the

number of faults and development/maintenance time

required [17][18]. The number of communities

measures the total number of distinct communities that

are used internally within a network. This is analogous

to the vocabulary size [17], a software complexity

measure that counts the number of unique operators

and operands. It reflects the size of search space when

writing or reading a command. As it becomes larger,

the operator has to consider and compare more options

to configure a community, and the configuration

becomes a more complex task. The number of LOC is

the sum of the number of individual communities used

in conditional/action clauses. This also has its

counterpart, which counts the number of individual

commands in software. The more places an operator

needs to configure, the more chance to make mistakes.

This is especially true when we configure communities,

each of which can have dependencies and can impact

tens to hundreds of BGP sessions [16]. Furthermore,

our previous work [9] finds a number of community-

related errors, such as missing communities and using

wrong communities in a network where each if-then-

clause consists of more than five communities on

average.

5.3. Results

Table 1 shows decreases in both the number of

communities and the number of LOC. The decrease is

noticeable in Network 1 since it had been expanding as

more networks were added over the span of the two

years we studied and thus had gone through many

changes in the past. Note that some redundancies are

by design, and operators can always keep certain

original communities from being restructured. The

operators can either exclude the original communities

from the analysis, or accept only a subset of the new

communities.

Each of the new communities either is equivalent to

an original community or represents policies

implemented by multiple communities in the original

configuration. Some of the new communities

implement business relationships among transits, peers,

and customers, while others implement policies

intended for traffic engineering. These are common

relationships found in a network, and configurations

concerning communities thus naturally can be reduced

according to the unique units of these relationships in a

network.

Dangling Communities. The majority of

communities that are removed by our algorithm (180,

39, 31, and 7 communities from network 1, 2, 3, and 4,

respectively) are either added in if-clauses but never

matched anywhere, or matched but never added. We

call these communities dangling communities since

they refer to a certain group, but do not form any edges

in the instance-property model. These communities are

remains of old configurations when peering

 9

relationships end. Others are defined by predicting later

usage thus allowing operators to use the communities

to deal with modification in peering relationships or

unforeseen problems in the future. However, from our

time-series analysis over a two-year period, we find

that none of these communities had been modified for

actual usage. These communities should be used only

when they are needed. Lengthening the configuration

with such communities might make the configuration

harder to understand, maintain, and more prone to

errors.

Subset Communities. A few communities are

removed since their functions are subsumed by those of

other communities. In other words, the edges created

by each of the removed communities are a subset of the

edges created by another community. In one network,

particular routes are re-advertised to a peer based on

the following matching condition.

if (A and C1) or (A and C2) or (A and C3) or …

Our algorithm detects that wherever A is attached,

one of the Ci’s is attached as well and thus is able to

simplify the condition as “if A.”

There are two possible reasons why such

communities exist: i) when communities are defined ad

hoc, the dependencies created by communities and the

policies implemented previously are not fully

considered, or ii) communities that are replaced by

others are not properly removed.

Combination of Communities. There are

communities that can be combined although none of

them are functionally subsumed by one another. Such

communities either represent the same set of routes and

match in different if-clauses, or involve different routes

and match in the same if-clauses. For example, three

communities are added by the same if-then clauses and

thus represent the same set of routes. The communities

are used so that the routes are not re-advertised to three

different networks 1, 2, and 3, respectively. Our

algorithm combines the three communities as one by

matching and adding a single community instead of the

three. Such combining does not limit the flexibility of

routing policies as long as we deal with the same set of

routes. If we no longer need to prevent the routes from

being advertised to network 2, we can simply remove

the single community from the corresponding if-clause.

Equivalent Communities. Each of the other new

communities (3, 4, 7, and 4 communities from network

1, 2, 3, and 4, respectively) is equivalent to an original

community. Although these communities do not

contribute to the reduction, they do present an

important implication as the combined communities.

This implication is that the majority of routing policies

comply with the come-from relationship. There are a

few exceptions, which we deal with in Section 6.

Time-series Analysis. Finally, we perform an

analysis on snapshots that cover a two-year period

(Network 1 and 2). The result is encouraging because it

shows that configurations from a simple transformation

can still be evolvable over time. During the period, the

networks add and remove peering relationships

periodically, and the overall number of relationships

grows by roughly 25%. We find that the reduced set of

communities is sufficient for this evolution. One or two

communities are added and then deleted during the

period to accommodate temporary peering

relationships that require unique routing policies.

6. Discussion

In this section, we go over a few cases where the

number of communities/LOC does not decrease when

the new groupings reproduced by the come-from

relationship disagree with the groupings in the original

configurations. Since we believe that the original

groupings could be more meaningful, we present

methods that restructure the new groupings into the

original groupings to improve the come-from

relationship. More details can be found in our technical

version of the paper [19].

Preference for Shorter Descriptions. A shorter

description could be more intuitive than a longer one.

For example, “All but routes from AS1 are to be

advertised to customers.” is more concise than “Routes

from ASes {2,3,4,…,n} are to be advertised to

customers.” The come-from relationship produces the

latter grouping while the original configuration uses the

former. The latter requires a community A to be

attached to the routes from each of the n-1 ASes

{2,3,4,…n}. The community is matched by “if A,

permit” when the routes are advertised to the

customers. On the contrary, to implement the former

grouping, we can use negation in the if-clause as in “if

(not A), permit”. This requires the community A to

be added only to the routes from AS1 and thus reduces

the LOC. Although the situation that we describe here

is not common, when it happens, we observe a

tendency towards using smaller I and P sets or fewer

communities.

Finer Decomposition Based on Actions. We can

further partition the policies resulting from the come-

from relationship in order to make their meanings

clearer. Assume that a set of prefixes P1 learned from

external peers is either dropped or receives a lower

preference at two different remote route filters. The

come-from relationship identifies the situation as one

 10

single policy, “come-from P1,” since the prefixes

always receive the same action as a unit. However, we

can divide the policy into two policies: i) “come-from

P1 to be dropped,” and ii) “come-from P1 to receive a

lower preference.” If the latter is used, one can easily

extend our algorithm so that come-from based policies

are further partitioned according to the corresponding

actions.

7. Conclusion

We present NetPiler, a way to transform a network

configuration into a simpler form, which is easier to

read and update. NetPiler groups policies into a set of

distinct policies, thus removing any duplicate

specifications, and it combines specifications that are

unnecessarily decomposed. We demonstrate NetPiler

for routing policies in four production networks,

especially the policies implemented by the BGP

community attribute. We show that up to 90% of

communities and up to 70% of community-related

commands are reduced. We also run NetPiler for

snapshots over two years and show that the reduced set

of communities can be reused and are sufficient for this

evolution.

The respective operators find NetPiler helpful for

managing and understanding their network

configurations. The strength of NetPiler is not only that

it helps change the existing configurations, but it also

represents the configurations in concise manners, thus

paving a way to improve the readability of the

configurations. NetPiler simplifies hundreds of policies

into roughly ten policies, and the operators understand

such a representation better than the original

configurations. This representation also leads the

operators to identify policies that are not intended or

misconfigured. Thus, we believe that NetPiler can

potentially reduce operator mistakes as well as

maintenance costs, making the network more reliable

and dependable. Finally, we hope to conduct user

studies that will involve many operators of various skill

levels to see if the resulting configuration files are more

manageable.

8. References

[1] Z. Kerravala, “As the value of enterprise networks

escalates, so does the need for configuraiton

management,” Enterprise Computing and Networking,

Yankee Group, 2004.

[2] “Evaluating high availability mechanisms,” Agilent

Technologies White Paper, 2005.

[3] R. Mahajan, D. wetherall, and T. Anderson,

“Understanding BGP misconfigurations,” in Proc. ACM

SIGCOMM, Aug. 2002.

[4] D. Oppenheimer, A. Ganapathi and D. Patterson, “Why

do Internet services fail, and what can be done about

it?” in Proc. USITS, 2003.

[5] C. Alaettinoglu, et al., Routing Policy Specification

Language (RPSL), RFC-2622, 1999.

[6] T. Griffin, A. Jaggard, and V. Ramachandran, “Design

principles of policy languages for path vector

protocols,” in Proc. ACM SIGCOMM, Aug. 2003.

[7] A. Greenberg, et al., “A clean slate 4D approach to

network control and management,” ACM SIGCOMM

Computer Communications Review, vol. 35, no. 5, Oct.

2005.

[8] Hitesh Ballani and Paul Francis, “CONMan: A step

towards network manageability,” in Proc. ACM

SIGCOMM, Aug 2007.

[9] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb,

“Minerals: Using data mining to detect router

misconfigurations,” in Proc. ACM SIGCOMM

Workshop on Mining Network Data, Sep. 2006.

[10] N. Feamster and H. Balakrishnam, “Detecting BGP

configuration faults with static analysis,” in Proc. NSDI,

May 2005.

[11] A. Feldmann and J. Rexford, “IP network configuration

for intradomain traffic engineering,” IEEE Network

Magazine, 2001.

[12] R. Brayton, A. Sangiovanni-Vincentelli, C. McMullen,

and G. Hachtel, Logic Minimization Algorithms for

VLSI Synthesis, New York: Kluwer Academic, 1984.

[13] A. Liu, E. Torng, C. Meiners, “Firewall compressor: an

algorithm for minimizing firewall policies,” in Proc.

IEEE Infocom, Apr. 2008.

[14] M. Caesar and J. Rexford, “BGP routing policies in ISP

networks,” IEEE Network Magazine, special issues on

inter-domain routing, Nov/Dec. 2005.

[15] O. Bonaventure and B. Quoitin, “Common utilizations

of the BGP community attribute,” Internet draft, draft-

bonaventure-quoitin-bgp-communities-00.txt, work in

progress, June 2003.

[16] S. Lee, T. Wong, and H. S. Kim, “To automate or not to

automate: on the complexity of network configuration”,

in Proc. IEEE ICC, May 2008.

[17] H. Zuse, Software Complexity: Measures and Methods,

Berlin: Walter de Gruyter, 1991.

[18] S. Alexandrov, “Reliability of complex services,”

unpublished.http://www.cs.rutgers.edu/~rmartin/teachin

g/spring06/cs553/papers/

[19] S. Lee, T. Wong, and Hyong S. Kim, “NetPiler:

Reducing network configuration complexity through

policy classification,” CMU Technical Report, CMU-

CyLab-07-009, 2007.

[20] JUNOS Configurations Guides.

http://www.juniper.net/techpubs/software/junos/junos83

/index.html

