
To Automate or Not to Automate:
On the Complexity of Network Configuration

Sihyung Lee Tina Wong Hyong S. Kim
Carnegie Mellon University

{sihyunglee,tinawong,hskim}@cmu.edu

Abstract—Configuring a network is a low-level, device-specific
task. Many have compared it to writing a distributed program in
assembly language, reserved only for highly experienced network
operators. Automation has been proposed by researchers and
industry as the solution to problems in network configuration.
However, there is a certain amount of resistance from the opera-
tor community against automation. On the one hand, operators
do desire a way for network-wide configuration. On the other
hand, they still like to have access and control to details, to ensure
flexibility and for debugging. In this paper, we attempt to answer
the question “How should we automate network configuration”
by studying where the complexity lies in network configuration.
With an operational perspective, using data from three different
types of production networks, we analyze the configuration files
from these networks over the span of up to two years. Our
analysis shows that the majority of changes to these files are a few
lines each and made frequently. We found that routing, especially
its policies, constitute a significant portion of the configuration
files, as well as modifications to them. We then present complexity
models to measure network-wide risk, impact and duplication of
routing policies in network configuration. We show that risk and
impact tend to grow over time, and the duplication factor is
high. Based on the results of our analysis, we propose ways to
automate the complex parts of network configuration.

I. INTRODUCTION

It is well known that networks are difficult to manage
and operate. Companies spend more resources on the daily
management and operations of their networks than on new IT
services. In particular, configuring a network can be a daunting
task. Usually, it is performed manually, by logging on to and
manipulating each router separately. There are commercial
products that help to track changes in the configuration and
keep router software up-to-date, but most of these products
only work in networks with devices from a single vendor,
which is not always a practical requirement. On top of that,
there can be hundreds of devices, thus hundreds of configura-
tion files, in a network, each with thousands of commands. A
change in one device can potentially affect other devices, or
even the whole network. Often, multiple devices need to be re-
configured to make a relatively minor change in the network.

Studies on networks have shown that misconfigurations are
common and can significantly affect the correct operations of
networks. Mahajan et al. [8] observe that misconfigurations in
BGP routers can lead to unintended production or suppression
of BGP routing announcements in up to 1% of the global
routing table. Wool [10] conducted a quantitative study on 37
enterprise firewalls, and found that all of them have some form

of misconfigurations. Our own studies [7] on router configu-
ration files confirm this observation. As a network evolves, its
configuration become even more difficult to understand, extend
and debug. Patches are sometimes put into configuration files
during firefighting to temporarily deal with a problem, and
forgotten and left in place after the pressure of the situation
is lifted. Personnel changes mean that configuration files are
edited by multiple engineers with different backgrounds and
working styles. Also, because of the low-level nature of router
configuration commands, the same high-level goal can be
achieved in multiple ways in the configuration.

Automation has been proposed as a solution to problems in
network configuration [4], [3], [5]. The goal in automation is
to allow a human to specify a high-level intent for its network,
and the network along with all its devices are configured
automatically by the network management software. While
attractive, some have pointed out that automation may not
always be the answer. Brown and Hellerstein [2] argues that
automation can sometimes increases the costs of IT operations
if the task being automated does not need to be repeated often,
and the overhead of creating and executing the automation
software is high. HCI studies in systems administrations have
shown that automation can hide information necessary during
decision making, thus it should be designed carefully [6].
Blindly automating all tasks that are simple and intuitive can
hurt network operations in the long run, because an engineer
can start to lose context of what is going on in a network.

In this paper, we aim to answer the question “How should
we automate network configuration?” by studying where the
complexity lies in network configuration. § II contains back-
ground information on network configuration. § III describes
our datasets. § IV discusses our complexity model and the
application of the model onto the datasets. The model char-
acterizes four different aspects of network configuration: the
size of the configuration per each function, the frequency and
size of the configuration changes over time, the degree of
dependencies, and the degree of similarities among network
elements. Based on the results of the analysis, we propose
ways to automate network configuration in § V. We then
conclude in § VI.

II. NETWORK CONFIGURATIONS

In this section, we give brief background on network
configuration. A network configuration is a distributed set of
commands such that each device has a subset of commands



1 router bgp 10
2 neighbor bose peer-group
3 neighbor bose remote-as 20
4 neighbor 20.1.1.1 peer-group bose
5 neighbor bose prefix-list pf_bose in
6 neighbor bose route-map from_bose in
7 neighbor bose route-map to_bose out
8
9 ip community-list deny-list permit 10:666
10
11 ip prefix-list pf_bose permit 20.1.1.0/24
12
13 route-map from_bose permit 10
14 set local-preference 30
15 set community 10:100 10:200
16
17 route-map to_bose deny 10
18 match community deny-list

Fig. 1. Excerpt of a Cisco router configuration file.

called a configuration file. A configuration file can be divided
into different segments, each of which instructs how each
segment of the device should operate, which protocol should
be running, and the options allowed by the protocol. Examples
of these different segments include interface, access control,
intra-domain routing, inter-domain routing, packet filtering,
Quality-of-Service parameters, traffic engineering, and general
management functions.

Each router vendor has its own proprietary configuration
language. Some configuration features are vendor-specific and
not available in another vendor. In the rest of this paper, we
use Cisco IOS terminology and syntax, but we have applied
both our methodology and implementation for Cisco IOS
and Juniper JUNOS configuration languages. Figure 1 is a
factitious excerpt of a router configuration file. We use it to
illustrate how routing protocols and policies are defined.

Lines 1-7 configure the BGP routing process. The number
10 is the local autonomous system (AS) number. In line
2, the command peer-group creates a group called bose.
peer-group facilitates the application and modification of
routing policies on a set of neighbors. Line 3 associates the
AS number 20 to bose, which tells us whether the BGP
session is with external or internal neighbors. Line 4 assigns
the BGP neighbor with IP address 20.1.1.1 to the peer
group bose. Line 5 applies a prefix list called pf_bose

to all BGP sessions of bose. pf_bose is defined in line
11. The keyword in specifies the prefix list is applied to
incoming advertisements. Therefore, only 20.1.1.0/24 is
accepted from the peer group bose. Lines 6-7 apply the
import policy from_bose and export policy to_bose to the
BGP sessions in bose, which are defined in lines 13-15
and lines 17-18, respectively. from_bose accepts all routes
and assigns them a local preference value of 30. It also
tags the routes with two communities 10:100, and 10:200.
to_bose denies routes which carry the community tag listed
in the community list deny-list, defined in line 9, which
corresponds to the community 10:666. Consequently, routes
marked with 10:666 are not advertised to BGP neighbors of
bose. Community list deny-list and prefix list pf_bose
can be referred to by other import or export policies. Likewise,

Network Time-span Num. of routers Num. of LOC
name total (IOS,JUNOS) (min,max)

Net-DC Jun 04-Mar 06 44 (37,7) (230,3060)
Net-HPR Jun 04-Mar 06 6 (6,0) (455,3638)
Net-UCB Mar 06-May 06 67 (65,2) (92,1688)

TABLE I
SUMMARY OF NETWORKS USED IN EVALUATION. LOC STANDS FOR LINES

OF COMMANDS.

import policy from_bose and export policy to_bose can be
reused by multiple peers if the peers apply similar policies.

III. DATASETS

Our dataset is comprised of configuration files from a
regional network access provider (Net-DC), a state-wide re-
search network (Net-HPR), and a large university campus
network (Net-UCB). Net-DC serves a large base of universities
and research institutions. It peers with hundreds of commodity
peers and buys services from multiple upper tier providers.
Net-HPR is a smaller research network providing advanced
services for experimental application users. Net-UCB is a stub
network that buys service from a single provider. Information
related to the networks is summarized in Table I. Two of
the networks include both Juniper and Cisco routers and our
study considered both types of routers. We collected the router
configuration files from Net-UCB over a period of 3 months
and the ones from Net-DC and Net-HPR for 21 months. Daily
file snapshots were captured for Net-DC and Net-HPR, and bi-
weekly snapshots for Net-UCB.

Even though we analyzed only three networks, we be-
lieve that the dataset is representative of existing networks
and covers different architecture types. Our data include the
four types of relationships between autonomous domains:
customer-to-provider, provider-to-customer, peer-to-peer and
sibling relationships.

IV. COMPLEXITY MODEL

This section presents our network configuration complexity
analysis.

A. General Patterns

We first identify the most commonly utilized commands in
the configuration files of our datasets. We use the Lines of
Code (LOC) metric, which has long been used to measure
software complexity by the software engineering commu-
nity. The number of LOC in our case counts the number
of commands and parameters in a configuration file. We
found that interface definitions and routing protocols, espe-
cially routing policies, have substantially more LOC than
other segments of network functions. In large size files,
we found that the section related to the configuration of
BGP routing policies can contribute to up to 66% of a
file. In particular, commands related to route tagging (in
Cisco IOS, community, community-list, community

members, ip route tag) are predominant in the three
networks. Commands related to route filtering (in Cisco

5727



Fig. 2. Distribution of number of lines modified during between snapshots:
for Net-DC and Net-HPR, daily snapshots are used; for Net-HPR, 7-14 day
snapshots are used. The x-axis is log-scale to show details of modifications
involving few number of lines.

Fig. 3. Types of changes on a router and their frequencies. The y-axis denotes
the amount of time elapsed between change on a router, and the x-axis lists
the categories of changes. Each dot in a graph represents a consecutive block
of changes (additions, deletions or modifications) in a router. We add slight
random jitter to each dot’s position so it can be distinguished from other dots.

IOS, route-filter, prefix-list, distribute-list)
are also frequently used.

B. Longitudinal Patterns

Are configurations modified frequently? Are most modifi-
cations small tweaks or big overhauls? Are the most common
commands also changed often? Here, we present a longitudinal
analysis on the three networks.

We first investigate the LOC touched when a configuration
file is modified. Figure 2 illustrates the distribution of LOC
touched between our snapshots, for the three networks in our
datasets. For all three networks, 80% of modifications involve
15 lines or less. Single line changes account for 37%, 34%
and 16% of all changes for the three networks, respectively.

For each router in a network, we then look at how its
configuration files are modified between snapshots. The results
for Net-DC are illustrated in Figure 3. Each change is repre-

R1

R3

R4

R5

R2

set C
match P

set C
match P

set C
match P

set C
set P

set C
set P
match C

C
risk=5
impact=1

P
risk=2
impact=3

Fig. 4. Illustration of the complexity metrics: risk and impact.

sented by a dot in a graph (changes to consecutive lines of a
configuration file is counted as a single change). There are six
categories of change: management (systems functions, SNMP,
login), forwarding, routing protocols commands (BGP, ISIS,
OSPF, EIGRP, RIP, routing options), routing policies (route-
map, prefix lists, community lists, AS path lists), filtering
(packet filters), interface commands, and others.

We found that routing related modifications are made fre-
quently, especially in Net-DC and Net-HPR, as illustrated
by the dense clusters of dots towards low end of y-axis.
Most of these changes occur within 10 days of the previous
change to the same router. Routing related changes account for
55% and 54% of all changes made in Net-DC and Net-HPR,
respectively. Routing related changes happen more often than
changes to packet filters in Net-UCB which is a stub network.
Also, changes to interface definitions are also frequent as
well as numerous, especially in Net-UCB. Digging deeper,
these interface commands (distribute-list, applied to
interfaces) are related to route redistribution in RIP, OSPF and
BGP within Net-UCB.

C. Risk vs. Impact Patterns

So far, we have shown that routing policies can consti-
tute a significant portion of a network configuration and its
subsequent changes. In particular, route tagging and filtering
are heavily used in our datasets. We now present a model to
measure the complexity of route tagging and filtering – its
risk of misconfiguration, and the potential impact of an error
– and apply that model on our datasets. The model is defined
in terms of the BGP community attribute, which is a common
form of route tag. Intuitively, the risk of misconfiguration
of a community increases proportionally to the number of
BGP sessions that set this community upon re-advertising a
route. The impact of a misconfiguration of a community is
proportional to the number of BGP sessions that take actions
on routes matching that community.

We now define the two complexity metrics formally. Let B
be the set of all BGP sessions in a network, Ω(B) be size
of B, in terms of number of sessions. Let Mout(b) be the
set of statements mi that define the export routing policies
applied to a session b, and likewise, Min(b) be the set of
statements that define the import routing policies on b. Let
the predicate pmatch(c,Mout(b)) be true if ∃mi ∈ Mout(b)
such that mi contains a match on the community c, and false
otherwise. Similarly, let the predicate pset(c,Min(b)) be true
if ∃mi ∈ Min(b) such that mi contains a set on the community

5728



(a) Risk (b) Impact (c) Impact vs. Risk

Fig. 5. Complexity of communities used in Net-DC with its commodity peers in (a) and (b), and with all its neighbors in (c).

c. The risk R and impact I of a community c are defined as,
respectively:

R(c) = Ω{b : b ∈ B ∧ pset(c,Min(b))} (1)

I(c) = Ω{b : b ∈ B ∧ pmatch(c,Mout(b))} (2)

Figure 4 shows an example of the two metrics. The network
includes five routers, {R1, R2, R3, R4, R5}, and uses two
communities, P and C. P is set from two routers, {R1, R2}, and
matched on three routers, {R3, R4, R5}. Consequently, there
are two locations where P can be mistakenly set on route ad-
vertisements and such mistakes can affect route redistribution
from three routers. The risk and impact of P are therefore 2
and 3. The other community C can be set from all five routers.
Thus, the risk=5 is greater than P. However, the impact=1 is
less since C is matched by only one router, R2.

Figures 5 (a, b) depict the risk and impact associated
with the communities used in the sessions connecting Net-
DC with its commodity peers over the span of 21 months.
In Figure 5 (a) (resp. b), each dot represents a community.
The y-axis represents the number of BGP sessions that sets
(resp. matches) that specific community. The top x-axis shows
the dates of configuration snapshots, while the bottom x-axis
illustrates the scale of the number of BGP sessions between
Net-DC and its peers. For example, in the snapshot dated
11/21/04, there were about 113 sessions between Net-DC and
its peers.

Figure 5 (a) shows four groups of communities:

• Group 1 consists of a single community, present in
most BGP sessions between Net-DC and its peers. This
community is used to mark the routes learned from peers.
Its risk increases over time as the number of peers grows.

• Group 2 comprises of a number of communities indi-
cating the source of the routes. More specifically, they
designate the routers where the routes are learned. Their

respective risk also increases with the number of BGP
sessions with each router.

• Group 3 contains communities with lower risk. These
communities typically uniquely identify the peers (at the
level of AS) for routes customization.

• Group 4 indicates a risk level of 0. These communities
correspond to the tags that are matched but not set. They
comprise the communities that are set to routes originated
internally or set in external networks.

Figure 5 (b) shows the impact of the communities used in
sessions between Net-DC and its peers. Three main clusters
of communities stand out:

• Group 1 consists of two communities. They are used to
specify the routes to filter and the ones to advertise to all
the peers. The impact of these two communities increase
with the number of peering networks as they need to be
present in all corresponding BGP sessions.

• Group 2 is a set of communities used for customization.
Certain routes from different customers are advertised to
specific classes of peers but not others.

• Finally, Group 3 indicates an impact of 0. We correlated
some of these communities between the routing policies
in Net-DC and Net-UCB and found that some of these
communities are used for inter domain routing. Set in
Net-DC, the communities are matched in Net-UCB.

The graph representing the risk and impact of the commu-
nities used with customer networks present similar patterns.

Finally, Figure 5 (c) represents the impact and risk of all the
communities used in Net-DC for the latest snapshot (March
2006) of the configuration files. It highlights the existence of
two sensitive communities. One presents a risk of 50 and an
impact of 150 while the second represent a risk of 150 and
an impact of 50. Both communities serve to coordinate routes
between a set of customers and a set of peers.

5729



D. Duplication Patterns

We investigate the degree of duplication in configuration
files. We first start by studying the frequency of appearance
of a same community list and prefix list definitions among
routers. We find that up to 91% of the defined community
lists and 54% of the defined prefix lists may appear in at
least two routers. These numbers show that same definitions of
both community lists and prefix lists are being re-used across
routers. Also, 13 community list and 15 prefix list definitions
were present in more than 25% of the routers in one of our
network. As such, it appears that large fractions of routers
re-use common definitions.

We introduce a duplication metric to assess the degree of
similitude among routing policies defined in the routers of a
network. Routing policies are typically defined as a sequence
of conditions and actions: routes matching a set of conditions
receive the specified actions. Each router vendor supports a
wide range of conditions (“match statements”) and actions
(“set statements”). We focus on four primitives: prefix list, AS
path, community and local preference. These four primitives
are the most commonly used in the match and set statements
in our analysis.

Our duplication metric models a routing policy definition in
the following way. We convert each command line of a routing
policy into a token, taking into consideration the direction of
the routing policy (in, out) and the action performed on the
route (e.g. permit, deny). In other words, a token represents an
action in a routing policy. We call a set of tokens (i.e., actions)
shared by at least k sessions, a pattern. As an example, the
routing policies of Figure 1 are converted into the following
five tokens:

in_permit_set_localpref_30
in_permit_set_comm_10_100
in_permit_set_comm_10_200
out_deny_match_comm_10_666

We define k = max(0.05 × Ω(B), 2), where Ω(B) is the
total number of sessions. The number of patterns is indicative
of the degree of similitude between routing policies. The size
of the clusters represents the number of sessions presenting a
specific pattern. Finally, the size of each pattern illustrates the
number of common actions in the shared policies.

The analysis reveals many patterns in each network. Net-
DC presents more than 400 patterns. The patterns themselves
can be large, including up to 40 common actions. Analysis of
these patterns reveals that most of the actions present in large
patterns are related to BGP communities. In many instances,
groups of actions related to communities are performed to-
gether.

Figure 6 further presents the distribution of the discovered
patterns for Net-HPR. We found that:

1) Most patterns are shared by small clusters of eBGP
sessions. However, because of the large number of eBGP
sessions, a cluster size of 10% still includes more than
20 eBGP sessions.

2) A number of patterns are present in more than half of

Fig. 6. Duplication of routing policies across Net-HPR.

the eBGP sessions. In Net-HPR, some routing policies
are applied to all eBGP sessions. These actions are
related to the filtering and distribution of routes through
communities.

The number of discovered patterns and the number of BGP
sessions using the same pattern suggest that similar routing
policies are applied across large subsets of BGP sessions. This
required degree of consistency in turn implies that the risk
of misconfiguration is elevated and exacerbated by current
network management techniques in which each router is
configured manually and separately.

V. WHAT TO AUTOMATE?

Small “tweaks” (15 lines or less) constitute a substantial
portion of configuration changes in our networks. Moreover,
single line changes range from 16% to 37% of all changes.
These incremental changes could also be from an operator
slowly rolling out a significant change to ensure continuous
availability of the network. In either case, this finding has a
number of implications. First, automated network management
software should provide peepholes to low-level details of
a network, even if the common case is for the software
to hide these details. Second, it is neither worthwhile nor
desirable to automate all segments of network configuration.
The flexibility of using individual commands for testing and
debugging should remain.

We found that routing policy configurations impose risk
and impact on the network. To facilitate the configuration of
complex routing policies, the BGP community attribute was
introduced by IETF. It is highly expressive, and allows an op-
erator much flexibility in its use. However, community values
are typically defined in an ad-hoc manner and coordinated
across routers and autonomous domains manually [11]. The
complexity of BGP community usage (or any form of route
tagging and filtering) may not be apparent during configuration
or examination of configuration files. This complexity can
grow over time, as we have shown, especially when a network
expands in size and function. The risk and impact complexity
metrics defined in this paper can help to identify routing
policy configurations in a network that should be carefully

5730



maintained. More importantly, an operator can evaluate the
complexity of a routing policy configurations in terms of
these metrics, and simplify it if possible, before deployment.
This network audit can be easily automated to help in the
maintenance and management of a network’s configuration
files.

We found that high degrees of duplication exist in rout-
ing policy configurations. The duplicated patterns of routing
policy configurations observed in our complexity model point
themselves to automation. Note that the duplicated patterns
represent subsets of a router’s complete routing policy. In other
words, each router’s complete routing policy can be unique,
but portions of the policy can be shared (thus duplicated)
across many routers in a network. This means an automation
engine may not be able to simply duplicate one router’s policy
onto a new router in a network. The commonly implemented
approach is to parametrize the automation engine – it asks
the operator to provide information about the configuration
being automated. However, this approach has the drawback
discussed in [2], in which the overhead of executing the
automation engine is higher than the savings it provides. The
main observations in this paper point to another approach.
During configuration, the network management software can
automatically perform data mining to find duplicated patterns
related to the configuration task and presents them to the
operator. This provides the operator visibility to and control of
low level details, essential in incremental modifications, while
allowing the operator to easily copy-and-paste configuration
commands from elsewhere in the network.

A. Intent-based Network Configuration

Researchers have observed that it is not obvious to translate
a simple high-level intent into low-level implementation of
configuration commands. The configuration commands are
designed by router vendors, with routing protocols and router
processing in mind, and do not necessarily have the appropri-
ate constructs for network engineers to specify their intent.
Many (for example, [9], [1]) have proposed configuration
languages and systems to combat this problem. Users specify
their intent in these high-level languages and the systems
automatically translate them into low-level commands.

Our analysis results provide several insights to the design of
intent-based network configuration languages and systems. We
found that configuration changes are made incrementally and
frequently. Intent-based configuration should allow operators
to specify their intent not only in the spatial manner but
temporally as well. This means intent-based languages should
provide constructs that describe step-by-step deployment or
function roll-out, for example. We observed that network
configuration can increase in complexity over time. Intent-
based systems should provide ways to make sure originally
specified intent remain the case over time, and different intents
do not conflict with one another. Our results show that routing
policy configurations can particularly benefit from high-level
abstraction available through intent-based configuration. In-
stead of using low-level commands such as route tagging and

filtering, the corresponding intent, such as “do not propagate
routes from peer A to peer B” should be explicitly configured.

VI. CONCLUSIONS

We characterize the complexity of the configurations from
five production networks in four different dimensions: the size
of the configuration by each segment, the size and frequency of
changes over time, the degree of dependencies, and the degree
of similarities across the network. We find that routing policies
represent a dominant part of the configurations. The routing
policies mostly address the route tagging and filtering. The
commands related to these features are frequently modified,
almost daily. Interestingly, 80% of modifications involve 15
lines of the configurations or less. This suggests that most
modifications are either small or incremental changes. Based
on these observations, we study the routing policies in terms
of their dependencies and similarities across the network. We
find that route tags have a high degree of dependencies. A
small mistake on the tags impact the route advertisements to
more than 100 peers. We also find that more than 400 routing
policy patterns are common across 20-100% of eBGP sessions.
We draw the following conclusions from the results. First,
operators use individual commands to make small changes in
daily operations. These commands will be used despite the
degree of automation. Second, we should be able to describe
and automate policies that need to be deployed incrementally.
Third, the automation can perform periodic audits and classify
network elements by highlighting ones with high impact and
risk. The operators can thus prioritize the level of responses
to these classified network elements accordingly. Finally, the
automation can data-mine common patterns and present the
patterns to the operator as possible configurations. The pat-
terns can also be used to ensure that the common policy is
configured consistently across the network.

REFERENCES

[1] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A Novel Firewall
Management Toolkit. In ACM Transactions on Computer Systems, 2004.

[2] A. B. Brown and J. L. Hellerstein. Reducing the Cost of IT Operations
– Is Automation Always the Answer. In HotOS X, 2005.

[3] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford. The Cutting EDGE of IP Router Configuration. In HotNets-
II, Boston, MA, November 2003.

[4] A. Feldmann and J. Rexford. IP Network Configuration for Intradomain
Traffic Engineering. IEEE Network Magazine, 2001.

[5] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated
Provisioning of BGP Customers. IEEE Network, 2003.

[6] D. Hrebec and M. Stiber. A survey of system administrator mental
models and situation awareness. In SIGCPR, 2001.

[7] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb. Minerals:
Using data mining to detect router misconfigurations. In ACM Sigcomm
Workshop on Mining Network Data, Sep 2006.

[8] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
Misconfiguration. In Sigcomm, August 2002.

[9] A. Mayer, A. Wool, and E. Ziskind. Fang: A Firewall Analysis Engine.
In IEEE Security and Privacy, May 2000.

[10] A. Wool. A Quantitative Study of Firewall Configuration Errors. IEEE
Computer, June 2004.

[11] M. Yannuzzi, X. Masip-Bruin, and O. Bonaventure. Open Issues in
Interdomain Routing: A Survey. IEEE Network Magazine, Nov. 2005.

5731


