
66 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

Detecting Network-Wide and Router-Specific
Misconfigurations Through Data Mining

Franck Le, Sihyung Lee, Student Member, IEEE, Tina Wong, Hyong S. Kim, and Darrell Newcomb

Abstract—Recent studies have shown that router misconfigura-
tions are common and can have dramatic consequences to the op-
erations of a network. Misconfigurations can compromise the se-
curity of an entire network or even cause global disruptions to
Internet connectivity. Several solutions have been proposed. They
can detect a number of problems in real configuration files. How-
ever, these solutions share a common limitation: they are based on
rules which need to be known beforehand. Violations of these rules
are deemed misconfigurations. As policies typically differ among
networks, these approaches are limited in the scope of mistakes
they can detect. In this paper, we address the problem of router
misconfigurations using data mining. We apply association rules
mining to the configuration files of routers across an administrative
domain to discover local, network-specific policies. Deviations from
these local policies are potential misconfigurations. We have evalu-
ated our scheme on configuration files from a large state-wide net-
work provider, a large university campus and a high-performance
research network. In this evaluation, we focused on three aspects
of the configurations: user accounts, interfaces and BGP sessions.
User accounts specify the users that can access the router and de-
fine the authorized commands. Interfaces are the ports used by
routers to connect to different networks. Each interface may sup-
port a number of services and run various routing protocols. BGP
sessions are the connections with neighboring autonomous systems
(AS). BGP sessions implement the routing policies which select the
routes that are filtered and the ones that are advertised to the BGP
neighbors. We included the routing policies in our study. The re-
sults are promising. We discovered a number of errors that were
confirmed and corrected by the network administrators. These er-
rors would have been difficult to detect with current predefined
rule-based approaches.

Index Terms—Association rules mining, error detection, net-
work management, static analysis.

I. INTRODUCTION

C ONFIGURING routers is a tedious, error-prone and
complex task. Wool [1] presents a quantitative study of

configuration errors in 37 firewall engines, and found that all
of the firewalls contained some misconfigurations. The author
concluded that “complex rule sets are apparently too diffi-
cult for administrators to manage effectively.” Feamster and

Manuscript received November 28, 2006; revised June 05, 2007 and De-
cember 18, 2007; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor O. Bonaventure. First published June 27, 2008; current version published
February 19, 2009. This paper was presented in part at the ACM SIGCOMM
MineNet Workshop, Pisa, Italy, 15 September 2006.

F. Le, S. Lee, T. Wong, and H. S. Kim are with Carnegie Mellon University,
Pittsburgh, PA 15232 USA (e-mail: franckle@cmu.edu; sihyunglee@cmu.edu;
tinawong@cmu.edu; kim@ece.cmu.edu).

D. Newcomb is with Network Operations, Corporation for Education
Network Initiatives in California (CENIC), Cypress, CA 90630 USA (e-mail:
darrell@cenic.org).

Digital Object Identifier 10.1109/TNET.2008.925631

Balakrishnan [2] found more than 1000 errors in the router con-
figurations of 17 networks while focusing only on one aspect of
the configurations—the one related to the configuration of the
Border Gateway Protocol (BGP). BGP is the most commonly
deployed inter-domain routing protocol. It allows networks
to connect to each other. Mahajan et al. [3] measured BGP
configuration errors that were visible from routing updates at
the Oregon RouteViews servers over the course of 21 days, and
found that misconfigurations were pervasive. About 75% of
all new advertised routes were erroneously announced during
that time,which was a conservative estimate according to the
authors. In addition to their prevalence, misconfigurations can
have large impacts: in 2004, misconfigurations in network
AS9121 resulted in the propagation of 100K+ routes, leading to
“misdirected/lost traffic for tens of thousands of networks” [4].

Several solutions have been proposed to deal with the router
misconfiguration problem [2], [5]–[8]. All but one of them com-
pare configurations with a list of constraints or common best
practices that a network ought to follow to function correctly.
This approach makes the assumption that rules violations are
misconfigurations, and is very effective in detecting certain
types of clear-cut problems, such as checking that internal BGP
speakers form a full mesh [2], verifying that all IP addresses
within a network are unique [6], and determining whether
referenced routing policies are actually defined [5].

However, the identification and definition of the constraints
can be a challenging task. What constitutes an error sometimes
depends on the network—what is an error for one network can
be common practice for another. This relativism of error defini-
tion is echoed by others. Maltz et al. [9] studied configuration
files from 31 networks, and concluded that routing design can
be diverse and each network so different from another that it is
not possible to classify them: the design of network routing is
eclectic, “an art where many approaches might be used to try to
achieve the same result.” While, for routing designs, classic text-
books generally define two architectures—the enterprise and
backbone architectures—2/3 of the analyzed networks “exhib-
ited designs that were markedly different from textbook exam-
ples and from each other.” The existing approach presents limi-
tations in the scope of errors it can detect. The rules would have
to be the lowest common denominator, ones that are universally
applicable to all networks. Unless an operator works with the
tool developer to define rules for the network on a case-by-case
basis, the peculiarities of the network’s configurations would
not be considered in the error detection process.

Solutions to detect router misconfigurations fall on a spec-
trum. On one extreme, we can use tools that apply best common
practice rules to detect known misconfigurations. On the other

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 67

extreme, there is pure data mining that ignores underlying
structure of router configuration commands and domain spe-
cific knowledge. We choose to be somewhere in the middle
of this spectrum of the two extremes. Our approach, called
Minerals, applies data mining on router configuration files
across a network to infer local, network-specific policies and
detect potential errors that deviate from the inferred policies.

Our method is based on data mining and is different from
existing approaches which rely on an a priori model.

Our contributions are summarized as follows:
• First, we propose a new method to the router misconfig-

uration problem. While most of existing solutions depend
on an a priori model, our proposal automatically discovers
the local rules of a network by applying data mining tech-
niques. More specifically, Minerals uses association rules
mining. While association rule mining has traditionally
been applied to discover unknown patterns in large datasets
and to predict future behaviors, we use association rule
mining to infer the local, network-specific policies in a net-
work and to detect potential misconfigurations.

• Second, we describe a set of techniques to convert network
configuration into a format that is suitable for associa-
tion rule mining. Raw configuration files are not conducive
to data mining. Each configuration file is a concatenated
list of commands typed to specify the desired behavior
of a router. Therefore, we suggest a general method to
pre-process this data and represent it in a way appropriate
for association rule mining.

• Finally, we have implemented our scheme and evaluated it
on the configuration files from three operational networks.
We found a number of errors with minimal effort from the
operators. Many of the discovered misconfigurations were
deemed “serious” and “concerning”. The network adminis-
trators found Minerals helpful and provided positive feed-
back. We describe the errors in detail in Section V. We be-
lieve that a better understanding of existing errors can help
in improving and designing future router configuration lan-
guages and network management tools.

We discuss related work in the next section. Section III de-
scribes our approach, Minerals. Section IV presents our imple-
mentation and Section V shows the results of our evaluation on
the configuration files from three different networks. Finally, we
conclude the paper with discussions and future work.

II. RELATED WORK

In this section, we introduce a taxonomy to classify the ap-
proaches that analyze network configurations and describe work
related to Minerals in the context of this taxonomy. The tax-
onomy divides the approaches in two dimensions. The spatial
dimension describes how many routers are studied at a time.
The temporal dimension represents whether configurations are
analyzed from a specific point in time or across time.

SR (Single Router) explores one router’s configuration from a
specific time. The Router Audit Tool (RAT) [7] checks a router’s
configuration file against security recommendations set forth by
the National Security Agency (NSA) [10], highlights the differ-
ences and assigns a score to indicate the security level of the
router in question.

MR (Multi Router) studies multiple (or all) routers of a
network from a specific time. Maltz et al. [9] developed a
method to reverse-engineer a network’s routing design from its
router configuration files. The main goal is to understand the
ways operational networks deploy routing protocols. Xie et al.
[11] extracted information from configuration files to conduct
static reachability analysis which can detect logic or design
errors. Netsys [15] was among the first to propose misconfig-
uration detection through the parsing and analysis of router
configuration files across a network. Feldmann and Rexford [5]
adopted a similar approach but suggested to take advantage of
the network’s homogeneity—in terms of configuration com-
mands—and focus on the most frequently used ones to reduce
the complexity of the tool and to stay up-to-date with recent
introduced features. rcc [2] concentrates on BGP misconfigura-
tions across a network. Errors that it can detect include various
BGP signaling problems and commands referring to undefined
policies. All [2], [5], [15] rely on rules that need to be known
a priori and to be provided in advance. These approaches
can also detect violations of local, network-specific, policies.
However, in order to achieve this, [2] and [5] require the local
policies to be codified into the tools. Such customization has
to be performed per network and can require significant effort
from the network administrators. With EDGE, Caldwell et al.
[6] argue that manual configuration of routers is error-prone
and should be replaced by an automated process with inventory
control. It suggests using data mining to mine configurations
for errors but describes no details. The work of El-Arini and
Killourhy [8] is perhaps the closest to ours. They use a set of
Bayesian-based algorithms to detect statistical anomalies in
router configurations. While the goal is similar, the approaches
differ. Their algorithms focus on the frequencies of the com-
mand lines and associated attributes but do not consider the
context of the commands. The authors assume that each com-
mand line is independent. However, such assumption does not
hold for router configurations. Instead, Feldmann and Rexford
[4] showed that there exist strong dependencies within a router
and across routers of a network. In network configuration, the
context often determines the values of the attributes. As an il-
lustration, the command “ip cdp” may be associated with the
argument of 1 (i.e., Cisco Discovery Protocol may be enabled)
on internal interfaces but with the value of 0 (i.e., disabled) on
external interfaces as recommended by the NSA [10]. In Min-
erals, we rely on the context of the configurations to infer local
network policies and identify the violations. Another related
work worth mentioning is the one from Engler et al. [16]. It
automates the discovery of programming rules to then identify
programming errors in source codes. While the goals and the
approach share similarities, because of the differences in the
application areas (programming bugs versus network miscon-
figurations), the means to extract the rules differs significantly.

SR-TS (Single Router Time Series) looks at one router’s
configuration across time, and MR-TS (Multi Router Time
Series) analyzes multiple routers across time. EDGE suggests
automating the provisioning tasks of a network by studying a
network’s configuration over time to identify recurring steps,
but provides no concrete method. To the best of our knowledge,
there are no other proposals in the TS area.

68 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

III. MINERALS

Data mining searches for patterns and rules in large data sets.
Recently, it has been applied to systems and networking prob-
lems such as isolating bugs in software and detecting anomalies
in traffic. Data mining can be used to identify errors in network
configurations as well. Policies are usually applied across a net-
work and evident in most routers in a network. As such, network
elements often share common configurations. For example, to
prevent various denial-of-service attacks, all routers or all edge
routers in a network commonly implement some specific packet
filters. As other illustrations of patterns in local policies, in one
of the networks we have worked with, the Open Shortest Path
First (OSPF) protocol was deployed and one local policy con-
sists in having all interfaces in passive mode by default and
explicitly use the command no passive-interface for
backbone interfaces. This policy is to prevent users from in-
jecting routes into the OSPF domain. Similarly, the network is
deploying the Routing Information Protocol (RIP). The network
has a number of subnets with user devices using RIP to learn
their default paths. On non-backbone interfaces, the local policy
mandates a distribute-list out command so that only
the default route would be sent out, and a distribute-list
in command to ensure that routers do not accept announce-
ments originated by user devices. In this network, all backbone
interfaces and all non-backbone interfaces running OSPF (or
RIP) share commonalities.

Minerals uses data mining to discover local rules of a network
and detects potential misconfigurations that deviate from these
rules. In the networks above, an edge router lacking a required
packet filter, a non-backbone interface running OSPF in a non-
passive mode, or a non-backbone interface running RIP with
missing distribute-list would all constitute violations
of local policies and represent misconfigurations.

Local rules of a network can be complex and usually not cap-
tured by universal rules set forth by common best practice doc-
uments. To illustrate it, we describe the use of MD5 security to
protect BGP sessions in a regional network provider and a large
university campus. The “textbook” rule is to turn on MD5 if the
routers involved support it. Indeed, this is the local rule of the
network provider. However, the stability of MD5 implementa-
tions varies across vendors and operating system versions. Some
autonomous systems (ASes) resist turning on MD5 because it
delays session re-establishment after a reset. The local rules in
the case of the university network are MD5 is “off” if the end
point routers have exhibited problems in the past, “off” between
certain ASes who preferred not to use it, “on” if the routers are
from a particular vendor, and “on” on the rest of the sessions.

In this section, we describe using association rules mining
[12] to find patterns of correlation between elements in router
configurations across a network—outliers to the discovered pat-
terns are potential misconfigurations. The approach assumes
that there exists common configurations across routers, and the
number of properly configured functions is large when com-
pared to the number of their misconfigured counterparts. The

Fig. 1. Overview of Minerals.

obvious drawback of this assumption is that nonconforming but
valid configurations can be classified as errors. To handle this
drawback, we discuss incorporating operators’ feedback to train
and to improve accuracy of our technique. Note that logic or
design errors which violate general network goals, such as in-
correct packet filters preventing subnets from communicating,
cannot be detected by Minerals.

Section III-A presents a general method to preprocess routers
configuration’s information. Independently of the selected data
mining technique, the data needs to be preprocessed since raw
configuration files do not have much structure and are not con-
ducive to data mining analysis. Section III-B provides a brief
background on association rule mining. Section III-C explains
how we apply association rules mining in Minerals. Finally,
Section III-D describes the post-processing steps; these opera-
tions apply domain knowledge information to improve the accu-
racy of Minerals and reduce the number of false positives. Fig. 1
provides an overview of Minerals’ main steps.

A. Preprocessing the Input Data

Routers’ configuration files are lists of commands and argu-
ments that specify the routers’ behaviors. These files include the
interfaces, the routing protocols, the remote access and all other
aspects of a router’s operations. However, those files have little
structure and are not fit for data mining. This section describes
a general method to process the data—using domain knowl-
edge—into a representation for data mining.

1) Instance Type Identification: Data mining techniques gen-
erally work on sets of instances. Each instance is characterized
by a list of attributes. In Minerals, an instance type also repre-
sents a unit of error detection. Considering the local policies de-
scribed above, the application of association rules mining may
have allowed to discover that in that network, 99% of the non-
backbone interfaces running RIP have a specific distribute

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 69

list in. Each instance is an interface. Interfaces are charac-
terized by a number of attributes including the routing protocols
they run and the filters they apply. The few instances that vio-
late the discovered rule are highlighted as potential misconfig-
urations. Since we focus on interface as the instance type, each
error is a misconfigured interface.

We propose to divide the information in the network config-
uration into different instance types. Possible instance types in-
clude router, user account, interface, and BGP session.

2) Attribute Selection: Even though an instance type is rep-
resented by a list of attributes, not all attributes are important
and suitable for data mining. Some attributes (e.g., description
strings) do not contribute to the operation of a network. We sug-
gest to remove them since errors in those fields do not impact
the network’s operations. Other attributes may be modified fre-
quently as part of the day-to-day operations and may not be con-
ducive to data mining either. For instance, operators may tune
the OSPF weights to avoid link congestions [17].

Instead, we select attributes for each instance type so that only
relevant information is retained. As an example, an interface can
be characterized by the running routing protocols, the supported
services, and the applied packet filters.

3) Attribute Abstraction: The type (e.g., Boolean, integer,
string, etc.) that we select to represent the different attributes
determines the rules and types of errors that will be discovered.
Using domain knowledge, we propose to further process the se-
lected attributes as follows.

• Boolean. Applying data mining with attributes that are ex-
pected to have different values across the instances may
reveal few or no common patterns. Since we may not be
interested in the exact values of these attributes but rather
whether the attribute exists, we change the attribute so
it takes on Boolean values. For example, considering the
“user account” instance type, this instance type may have
several attributes including the “password” that has been
set for this account. The value of the password is not as
important as the existence of an explicit, non-default pass-
word. Leaving the password string as is, and applying data
mining may reveal that certain users have different pass-
words on the different devices. Such result may not be of
interest. Instead, an account (e.g., with super-user privi-
lege) which is lacking a required password may consist a
more concerning error.

• Group. If an attribute is characterized by values that be-
long to groups and the values themselves differ across the
instances, we convert the attribute so that it takes on the
group names as its values. The reasoning is the same as
above. For example, instead of storing the actual IP ad-
dresses of an interface, the IP addresses are classified as
private or public. Similarly, the AS number of the other
end point of a BGP session can be used to derive the type
of a BGP session (i.e., internal or external).

4) Data Cleaning: Each router vendor has its indepen-
dent configuration language, e.g., Cisco’s IOS versus Juniper

JUNOS, that can be vastly different from others. An interme-
diate representation is necessary to compare configurations
from different vendors, which may bear no resemblance syntac-
tically but are semantically equivalent. To illustrate, IOS relies
on privilege levels (0–15) to define a user’s rights whereas
JUNOS uses the concept of classes (super-user, operator, etc).
An IOS’s privilege level 15 can be considered comparable to
JUNOS’s “super-user” class. However, sometimes, an interme-
diate representation is not sufficient. Vendors may implement
features in ways that cannot be reconciled across vendors. For
example, there seems to be no equivalent of IOS’s privilege
level 6 in JUNOS.

There can also be various ways to implement the same func-
tionality. In IOS, a routing prefix can be filtered on a BGP ses-
sion either directly through applying a prefix-list, or by using
prefix-list in a route map and applying the route map on the BGP
session. We can clean the data such that attributes that define the
same functionality are grouped into one attribute. Finally, in the
previous example, the attributes “incoming prefix-list” and “in-
coming route map” can also be subsumed into “incoming poli-
cies” as they both specify routing policies.

B. Background on Association Rules Mining

This section gives a brief overview of association rules
mining. Interested readers can refer to [12] for details.

We select the association rules mining technique to detect
anomalies in router configurations for the following reasons.

• To be effective, network policies are usually applied on
most or all objects of the same category across a network.

• Network policies can often be expressed as rules. For ex-
ample, the policy “BGP sessions with external ASes must
be authenticated” can be represented by the rule

.
• Deviations from local network policies can either be

misconfigurations, nonconforming valid configurations,
or temporary solutions, all of which should be audited
periodically.

At a high level, association rules mining examines the statis-
tical properties of correlations present in a large data set. In the
traditional data-mining context, it is used to classify and pre-
dict an attribute or combination of attributes. The prediction is
called a rule. Let be attributes. Association mining
searches for rules ,
in which any combination of unique attributes can be on the
left-hand side. In other words, a rule takes the form “if then

”, or , where the left-hand side represents the “con-
dition” and the right-hand side the “consequence”. The pattern

is also known as an item set.
is a 0-item item set,

is a 1-item item set,
is a 2-item item set, and so on.

Given an item set , its support, , is defined as the
number of instances that satisfy the condition . Given

, its confidence is calculated as .

70 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

TABLE I
ILLUSTRATION OF ASSOCIATION RULES MINING

An instance is characterized by a number
of attributes (e.g., �, �, �, etc.).

We illustrate association mining using Table I.

In our context, rules with high confidence are considered reflec-
tions of local network policies. Instances that deviate from these
rules (i.e.,) are identified as potential misconfigura-
tions because they do not comply with the inferred policies.

C. Applying Association Rules Mining in Minerals

This section describes how we apply association rules mining
in the context of Minerals. It describes the algorithm to infer
the network-specific local policies and to identify the potential
misconfigurations.

1) An Algorithm to Infer Local Policies and Detect Miscon-
figurations: In Minerals, the generation of association rules and
detection of violations from those rules consists of the following
four steps.

Step 1) Item set generation. For each instance type, this step
generates all possible combinations of item sets, e.g., all 1-item
item sets, 2-item item sets, etc., with the restriction that the sup-
port is over the threshold . A number of algorithms
have been proposed by the data mining research community to
compute item sets efficiently.

Step 2) Inference of local policies. The goal of this step is to
generate association rules. Minerals filters out rules with confi-
dence values lower than the threshold as we want to
find rules that are the most pertinent and more likely to be re-
flections of local policies. This step can also apply domain-spe-
cific knowledge to eliminate irrelevant rules and thus reduce
the false alarm rate: if common sense says attribute cannot
imply or be correlated with , we eliminate all rules of the form

. Even though this only needs to be
done once and can be henceforth remembered by the Minerals
algorithm, it nevertheless can be labor intensive.

We show in our evaluation that without applying this filtering
rule, we are still able to achieve decent results.

Step 3) Violation detection. Since we are focusing on miscon-
figurations, we do not consider rules with confidence equal to 1.
Violations are instances that do not comply to a rule
with . The attribute that might be
misconfigured is either in or —usually, the rule has the ex-
pected, common value, whereas the violation has a potentially
wrong value. We also eliminate rules that generate more than

number of violations. The reason behind using
is that the number of misconfigurations should

be small in a network. If a rule results in a large number of vio-
lations, the violations are most probably not misconfigurations,
and the rule unlikely to reflect a local policy. We use a simple
default value of 10.

Step 4) Filter and report. The last step reports the identi-
fied violations in decreasing order of confidence. Since multiple
rules can point to the same misconfigured instance, we only re-
port the instance once and indicate the rule with the smallest
item set size on the left hand side. Such an operation allows to
focus on the attributes that raised the violations. Also, it keeps
the rules simple. Experience shows that those rules are often
easier to interpret.

2) Selection of Parameters: and : The
algorithm proposed in the previous section relies on a number of
parameters. This section describes several methods to determine

and .
Feedback-based method: Because our approach assumes that

the number of properly configured instances is high,
should have a large value. It can be initialized to 0.99 and then
incrementally decreased. After each run of Minerals, the net-
work operator can provide direct feedback on whether and how
a reported violation is a false alarm. The operator can indicate
whether the discovered rule is or not a reflection of his network
policy, and if the violation is an exception to a valid policy.
This knowledge can then be fed back into subsequent runs of
Minerals to filter rules and violations. The lists of rules and in-
stances previously raised and confirmed as valid exceptions by
the network operators are recorded. Subsequent results are then
compared with these lists before being brought up to the atten-
tion of the operator. For example, we assume that in the first
run of Minerals (set to 0.99), a rule was dis-
covered and one instance, violating this rule, was re-
ported. When presenting the results to the operator, this latter
may indicate that the discovered rule is not a reflection of a local
policy. Consequently, in subsequent runs of Minerals (e.g., with

0.99), will not be considered and
instances violating it will not be reported. Alternatively, to ease
the burden from the operator, Minerals can learn indirectly. Vio-
lations that are reported but not corrected over time are assumed
to be exceptions.

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 71

Fig. 2. Evolution of number of reported violations (after post-processing) as
��� ���� is decreased. In this case, the ��� ���� is chosen to be 0.94.

Heuristic-based method: As an alternative, we can decide of
the value of , based on the evolution of the number
of reported violations as we decrease possible can-
didate values. For each value of , we apply the al-
gorithms above to infer the local network-specific policies and
then, we identify the instances that violate them. We apply a list
of post-processing rules (described in Section III-D) to elimi-
nate several false alarms. As such, for each value of ,
we obtain a number of violations. We plot these numbers of
reported violations for possible values as in Fig. 2.
A guideline reduces until we find the knee of the
curve, i.e., the point at which there is a noticeable increase in the
number of violations afterwards. We use the value of
immediately before the knee of the curve. Assuming the evolu-
tion depicted in Fig. 1, we set to 0.94 and less than
40 violations are reported. The preferable value is determined
from the following reasoning: if the number of reported vio-
lations is large, those instances are most probably not miscon-
figurations. It is important to note that each derived value of

is specific to a dataset. As an example, we may find
one value of to apply when running Minerals on the
interfaces aspect of a network, and we may find a different value
for to be used on the routers aspect of that network.

Both the feedback-based and heuristic-based methods can be
applied together. The heuristic-based technique can first be ap-
plied. Then, the feedback-based method can be used to grad-
ually decrease the values. Such approaches allow to
discover errors while keeping the false positives and the number
of analyses low.

Finally, for , setting it to a low value may result
in an unnecessary large number of frequent item sets. Setting
it to a large value may prevent the detection of potential mis-
configurations. We set

where is the set of integers except the null
value.

D. Post-Processing

After pre-processing the configurations and running our asso-
ciation mining algorithm on them, we apply a post-processing
step to filter the results. The goal is to reduce false alarms by
demoting violations that are highly likely to be nonconforming,
but valid configurations.

The first post-processing step is related to routing policies and
attempts to identify whether the policies for a group of neighbor
routers in the same AS are nonconforming but intentional. Even
though policies for a specific neighbor AS are not consistent
with policies with other ASes peering with a network, they may
not be misconfigurations because it is not uncommon for a net-
work to customize policies for each neighboring AS. We assume
that if policies are consistent across all BGP sessions to the same
AS, the violation highlighted by Minerals is likely not a miscon-
figuration. This post-processing works as follows.

We note , a BGP session, and , the value
of in (e.g., is the AS number
associated with the external end of). We use a Boolean vari-
able, , to record the result.

for each BGP session violating an inferred rule

;

for each s.t. and
and

if { ; break;}

end for

// if all BGP sessions having the same AS and

// peer_group as present the same value for

// the attribute , demote .

if demote ;

end for

Note that the attributes above do not necessarily rep-
resent the complete routing policy applied to a BGP session. In
Minerals, a rule can be a subset of a routing policy. We do not
assume all routing policies to the same AS must be identical.
In fact, in some configurations, each router can add a distinct
community tag, thus rendering every route map unique if we
compare route map in its entirety. Minerals does not highlight
each of these route maps as an anomaly, because it only focuses
on commands that appear frequently in routing policies.

There are several ways to demote a violation. Currently, we
simply discard the violation. However, this may cause errors to
go undetected. A misconfiguration can be present in all BGP
sessions to the same AS because of a cut-and-paste operation.
There is an inherent tradeoff between the detection and false
alarm rates of Minerals. Several operators have told us that they
want to know about all inconsistencies in their configurations,

72 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

even though some are highly likely to be valid. Another way to
demote a violation is to lower its priority when presenting the
results to the network operator.

The second post-processing step is related to MD5 security.
Best common practice says it should be enabled on eBGP ses-
sions. However, in practice, some older routers do not support
this feature well and operators sometimes disable it for perfor-
mance or stability reasons. If Minerals reports a violation of
missing MD5 protection on a BGP session, this post-processing
step checks to see if any of the two following conditions is satis-
fied: i) the offending router is having sessions with other ASes
that require MD5, but all sessions from this router have MD5
disabled, or ii) all sessions to the other end point of the session
have MD5 disabled. If so, we assume the local policy says to
disable MD5 on this router or the other end point, and demote
the violation.

The last post-processing step identifies simple BGP sessions,
which we define as sessions which either use default routing,
or block all incoming or outgoing route advertisements. If Min-
erals raises a violation on a simple BGP session, we demote it.

IV. IMPLEMENTATION AND EVALUATION

We implemented and evaluated Minerals on the configuration
files from three networks (see Table III).

A. Case Study of Accounts, Interfaces, BGP Sessions,and
Their Associated Routing Policies

Many instance types can be identified and mined for miscon-
figurations. We conducted a study on three aspects of config-
urations, or what we call instance types: user account, inter-
face and BGP session. For the BGP session, we also consid-
ered the routing policies. We concentrated on these aspects since
we believe they are prone to mistakes. The results presented in
Section V confirmed that these aspects of the configuration con-
tain errors.

Below, we describe how we select or generate attributes for
each of the three instance types. For user account, interface
and BGP session, the attributes are the same for any network.
The attributes represent information that does not vary much
across different networks. On the other hand, for routing poli-
cies, the attributes are different for each network evaluated. The
attributes are extracted from the configurations based on the de-
tails of the commands and the action taken by the routing poli-
cies. Thus, the attributes are specific for a network, and the
number of attributes is dependent on the structure and com-
plexity of the routing policies within that network. For aspects
of configurations that are highly customized according to the
needs of a network, generating attributes in this way would yield
more local, network-specific rules. As shown in this case study,
the two ways of choosing attributes are both useful in the detec-
tion of misconfigurations.

1) Selecting Attributes for Account, Interface, and BGP Ses-
sion: User account is identified by the (router name, user name)
pair and is characterized by the attributes “password” and as-
signed “privilege level.” For the interface instance type, there
are a myriad of configuration options associated with it. We

TABLE II
SUMMARY OF PREPROCESSING OUTCOME

This table represents the format of some of the attributes characterizing di-
verse instance types. The final table that is considered for association rules
mining contains a significantly larger number of attributes. More specifically,
the addition of the attributes related to routing policies resulted in the addition
of more than 800 attributes in certain networks.

avoid attributes that are functionally independent thus not con-
ducive to data mining. We select an interface’s IP address and
whether it serves as a loopback. Finally, a BGP session is iden-
tified by the (router name, neighbor router) pair. We select the
following attributes, which characterize a BGP session at a high-
level: the AS number of the neighbor router, incoming routing
policies, outgoing routing policies and authentication scheme.
Routing policies are usually considered complex and prone to
errors. As such, we decide to analyze them in greater detail. The
following section describes the representation we adopt for the
routing policies applied to each BGP session.

The results of the initial phase of the preprocessing for the
three selected instance types are summarized in Table II. They
serve as input to the association rules mining algorithm de-
scribed in the previous sections. Additional attributes can be
added to characterize the different instance types. For example,
routing protocols and services (proxy-arp, Cisco Discovery Pro-
tocol, etc.) can be attributes of the interfaces.

2) Representing Routing Policies: This section focuses on
routing policies. We describe how we represent routing poli-
cies so that association rules mining can be applied to them and
misconfigurations, detected. Routing policies are usually con-
sidered complex to configure and their structure, intricate.

a) Background on routing policies: Routing policies
control which routes a router or a network accepts, filters and
forwards. At a high level, routing policies allow a network to
specify the flow of its inbound and outbound traffic. Redistri-
bution of routes between routing processes (e.g., from OSPF to
BGP, from RIP to OSPF) can also be configured.

Each router vendor has its own proprietary configuration lan-
guage. Some configuration features are vendor-specific and not
available in other vendors. In the rest of this paper, we use Cisco
IOS terminology and syntax, but both our methodology and im-
plementation work for Cisco IOS and Juniper JUNOS. Fig. 3 is
a factitious excerpt of a router configuration file. We use it to
illustrate how routing protocols and policies are defined.

Lines 100 to 110 specify the interfaces of the router.
Lines 200–202 configure the RIP routing process. The net-

work command indicates that all interfaces in 192.168.1.0
are to use RIP. The command with the keyword dis-
tribute-list out restricts advertised updates onto
Ethernet0/0 according to the access list called 1, defined in

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 73

Fig. 3. Excerpt of a Cisco router configuration file.

lines 403–404. The access list permits only a default route to
be advertised.

Lines 300–306 configure the BGP routing process. The
number 100 is the local autonomous system (AS) number.
In line 301, the command peer-group creates a group
called dora. peer-group facilitates the application and
modification of routing policies on a set of neighbors. Line 302
associates the AS number 200 to dora, which tells us whether
the BGP session is with external or internal neighbors. Line 303
assigns the BGP neighbor with IP address 4.5.6.1 to the peer
group dora. Line 304 applies a prefix list called pf_dora
to all BGP sessions of dora. pf_dora is defined in lines
401–402, and permits only the prefixes 10.10.0.0/16 and
10.11.0.0/16. The keyword in specifies that the prefix
list is applied to incoming advertisements. Therefore, only
10.10.0.0/16 and 10.11.0.0/16 are accepted from the
peer group dora.

Lines 305–306 apply the import policy from_dora and ex-
port policy to_dora to the BGP sessions in dora, which
are defined in lines 500–502 and lines 504–505, respectively.
from_dora accepts all routes and assigns them a local pref-
erence value of 100. It also tags the routes with three commu-
nities 100:1, 100:2 and 100:3. to_dora denies routes
which carry the community tag listed in the community-list 2,
defined in line 400. Routes marked with 100:4 are not adver-
tised to BGP neighbors of dora.

b) A representation for routing policies: There are many
commands to configure routing policies. We choose a small
subset of them based on our observation that a significant por-
tion of routing policies is related to BGP communities, AS Path,
prefix lists and local preference. We distill these commands to
remove vendor-specific syntax. After parsing the router config-
urations from vendor-specific syntax to a common intermediate
representation, we expand each reference (i.e., prefix-list, com-
munity-list, and aspath-list), to the list definition. This allows us
to focus on the values of the lists and not the names assigned to
the lists. For example,sanity is used to name a prefix-list con-
taining unallocated IP address space in one router but the name
bogon is used in another router to specify the same prefix-list.

We then distill each action of a routing policy into an attribute.
For each line of a routing policy applied to a BGP session, we
extract the direction of the policy (incoming or outgoing), the
action taken (permit or deny, set community or local preference)
and the conditions being matched (community, AS path, prefix-
list). For example, the routing policies defined in Fig. 1 and
applied to the BGP sessions with dorawould be converted into
the following five attributes:

in_permit_set_localpref_100
in_permit_set_comm_100_1
in_permit_set_comm_100_2
in_permit_set_comm_100_3
out_deny_match_comm_100_4

An attribute can take on different values. In our case, an at-
tribute takes on a Boolean value of either 1 or 0: 1 if a routing
policy contains the action represented by the attribute, and 0 oth-
erwise. Thus, the attributes above would take on the value 1 for
the BGP sessions where the routing policy is applied on.

As such, each routing policy is converted into a number of
attributes and these attributes are added to the BGP session in-
stance type. The number of attributes related to routing policies
varies per network. Networks with many and complex policies
will tend to have more attributes.

In our current implementation, the pre-processing step only
yields a partial semantic comparison of routing policies. Reg-
ular expressions are not expanded. Two regular expressions may
differ syntactically but have the same semantics, e.g.,
and (1–2)00. Vendor-specific command syntax also presents ad-
ditional challenges. For example, to specify an AS path that in-
cludes the AS number 100, IOS would define it as , where
as JUNOS would define it as “ ”. Finally, our represen-
tation does not consider the ordering of lines within a routing
policy. Just like a program can be written in many ways, one can
achieve the same routing policy with different configurations.

Despite these limitations in our current implementation, we
believe that the adopted representation is acceptable for the fol-
lowing reasons. First, to keep problems to a minimum, net-
works are commonly configured by a small group of highly
skilled experts. Second, existing configurations are often used as
templates to configure another router or another routing policy.
There is a substantial amount of “cut-and-paste” in the three net-
works we studied. Later, we show that Minerals found a number
of errors in the routing policies’ aspect which are confirmed by
the network operators.

74 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

TABLE III
SUMMARY OF DATASET USED IN EVALUATION

CENIC is the California state-wide network service provider for education and
research institutions: DC is a backbone network serving education users, and
HPR is a high-performance research network providing advanced services for
large application users. UCB is the UC Berkeley network.

B. Dataset

Our dataset comprises configuration files from the CENIC
CalREN-DC and CalREN-HPR networks,1 and the UC
Berkeley campus network. Information related to each network
is summarized in Table III. Two of the networks include both
Juniper and Cisco routers and our study considered both types
of routers. For each of the three networks, we analyzed a
particular snapshot of its configuration files, taken between
January and April 2006.

Table III describes the number of instances we found in
each network, after parsing the router configuration files.
In addition to the five attributes of the BGP instance type
(type, MD5, incoming policies, outgoing policies, AS number)
described in Table II, the processing of the routing policies
(Section IV-A2.b) adds a number of attributes. The number of
additional attributes varies per network and increases as the
number of distinct routing policy actions gets larger. These
pre-processing steps generated 70 attributes in UCB, 177 in
cenicHPR, and 761 in cenicDC. In our dataset, cenicDC has
the largest number of attributes. This is not surprising since as
a service provider, it needs to define different routing policies
for its provider(s), peers, and other neighbors. The policies
are indeed complex. The BGP documentation of CENIC lists
390 communities. This network also applies a large number
of prefix-lists to prevent accidental address leaks, and applies
routing policies for traffic engineering purposes.

C. Implementation and Performance

Table IV lists the components of Minerals and their corre-
sponding programming languages. To generate the frequent
item sets, we use the LCM ver. 2 algorithm [13]. This algorithm
actually outputs closed frequent item sets. The closed frequent
item set representation significantly reduces the space require-
ments without affecting our results. In order to apply the LCM
ver. 2 algorithm, we needed to convert the input attributes into
Boolean format.

The aspect that requires the most time is the pre-processing.
CenicDC presents the largest observed time. It is in part due to
the large number of BGP sessions with routing policies. Also,
adding a new attribute to a large table can require several sec-
onds in MySQL. In the dataset from CenicDC, the addition of

1Corporation for Education Network Initiatives in California (CENIC). http://
www.cenic.org/

TABLE IV
IMPLEMENTATION AND PERFORMANCE CHARACTERISTICS

Elapsed time in minutes:seconds. The times were observed when running the
components on a machine with a CPU of 2.8 GHz and 2 Gb of memory.

Elapsed times for the “Closed FIM” and “Assoc. rules & Post-process” cor-
respond to the observed time when running these functions on the BGP session
instance type (which has the largest number of attributes)

a new attribute into the table representing the BGP sessions can
take more than 6 seconds.

However, the total processing times (including the parsing,
preprocessing, discovery of local rules and detection of miscon-
figurations) still remain in the order of 1 to 10 minutes for the
three networks we analyzed.

D. Usage Complexity

For a system to be practical and useful in operational set-
tings, it must be easy to configure and run. We believe Min-
erals satisfies these requirements. The configuration files need
to be placed in a common directory. The code processes them
without any further manual intervention from the operators. For
a value of , the running time varies from one
to a few minutes depending on the size of the configurations.
After the code parses the configuration files, pre-processes the
extracted information, infers the local policies, identifies the vi-
olations, and applies the post-processing rules, the operators are
presented with the results, i.e., the anomalies and the policies
that are violated by these instances. For all three networks, by
looking at the list of rules and violations, the operators were
able to quickly tell whether a raised instance was a misconfig-
uration and needed action. Rarely did the operators need to go
into the configuration files to collect more information regarding
the highlighted anomalies.

If the operator wants to determine an “optimal”
value before looking at the results (e.g.,

through the heuristic-based method presented above), it
first needs to plot the evolution of the number of reported
errors over different values. This can be
simply executed since the operator only needs to input a
varying value and the code will indicate
the corresponding number of violations. This step can be
automated.

Finally, a frequently raised concern with association rule
mining is the large number of rules that can be generated.
Minerals addresses this issue through the use of closed frequent
item sets (Section IV-C) and the reporting of potentially mis-
configured instances (Section III-C) instead of the discovered
rules. These two means remove existing redundancy and main-
tain the size of the output to a reasonable size, as illustrated in
Table V.

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 75

TABLE V
SUMMARY OF MINERALS’ RESULTS

��� ���� is determined through the heuristic-based approach. Minerals is first
applied to the datasets using these ��� ���� values. The presented numbers
(Needs fix, false positive) are the results after this initial phase. In a second
phase, feedback from the operators is included to discover additional errors
while discarding nonconforming but valid configurations.

V. RESULTS

We set where is the value
obtained through the heuristic-based method described in
Section III-C. The reason we used a “ ” is to ensure that

keeps a high value. This is motivated by the fact
that we infer local policies from discovered rules with a high
confidence value. The obtained values ranged from 0.97 to
0.90 depending on the instance type. Since we do not ex-
pect to go lower than 0.90, we fixed the value of

to 10. We did not pre-filter any association rules to
allow the algorithm to find all possible policies and violations.

Table V summarizes the results in two categories: needs
fix and false alarms. Needs fix is composed of two categories:
i) misconfigurations that are confirmed by the network opera-
tors, and ii) transitions, i.e., violations that reflect configurations
(e.g., policies) undergoing change. While such violations are
not always errors, they should be brought to the attention of
network operators. If not updated in a timely manner, these
cases can become errors. For example, in one case, an outdated
community that was not removed led to a customer filtering
out an intended route. False alarms are violations raised by
Minerals that are nonconforming but correct configurations.
Interestingly, the operators were interested in knowing about
these false positives as well. Those instances are outliers and it
is important to keep track of these configurations as the network
evolves.

We describe the results in more detail. All results are
anonymized. First, we determined the values
through the heuristic-based method. Section V-A presents the
errors that were detected in this initial phase and confirmed by
the operators. Then, in the second phase, we re-ran Minerals
with lower values (e.g., lowered from
0.97 to 0.95). When processing the new violations, we incorpo-
rate the feedback from the operators from the previous phase.
This process allows us to detect additional errors while keeping
the false positives to a low value. Section V-B describes the
additional error types that were discovered in this second phase.
Finally, Section V-C explains the false positives.

Summary of discovered error types:
• A number of user accounts with super-user privileges are

missing password.

• A few interfaces, used for bootstrapping purposes, were
detected. They should have been removed after the initial
deployment phase.

A number of errors were discovered in the routing policies ap-
plied to the BGP sessions. More specifically:

• A significant fraction of the errors related to the configu-
ration of routing policies are missing communities. These
misconfigurations affected the redistribution of routes,
the aggregation of prefixes and the accounting of certain
traffic.

• Typos were found in the definitions of communities. These
errors can prevent the intended actions to be performed.

• A number of sessions lacked import or export policy.
• The detected errors also included missing prefix-lists, both

in the incoming and outgoing directions.
• Sessions lacked MD5 security violating local policies.

A. Confirmed “Needs Fix” in First Phase

Missing passwords. In one network, Minerals found super-
user accounts without passwords. The inferred local rule was
that account with super-user privileges must have a password.
Minerals reported the instances that violated this rule. The op-
erator confirmed those accounts as errors, which presented a se-
curity breach.

Universal rules cannot capture local policies regarding the
user accounts in different networks. Some networks may allow
external parties to access certain information (e.g., routing
tables) without any password. Other networks may consider
the same type of information to be confidential and mandate
a password to access them. The starting privilege level where
a network may require the presence of a password is network
dependent. Minerals can infer these local policies.

Unused interfaces. In one network, 95% of the interfaces had
public IP addresses, and Minerals highlighted interfaces using
private IP addresses as violations. According to the operator,
private IP addresses are used to bootstrap routers at the begin-
ning of deployment, and should be deleted afterwards. These
confirmed misconfigurations were corrected by the operator.

It is difficult for rule-based approaches that rely on universal
rules to detect such errors, because the presence of private IP ad-
dresses does not automatically imply a misconfiguration. Some
networks use private IP addresses permanently, e.g., for network
management devices. The advantage of data mining is it con-
siders the statistical properties of a network, and in this case,
reveals the outlier interfaces as errors.

Missing MD5 security. Minerals found a large number of vi-
olations on missing MD5 security. The second post-processing
step described in III.D removed a substantial portion of these
violations. In one case, the violations are sessions to ASes that
preferred not to use MD5. All the sessions to those ASes are
found with MD5 disabled and therefore removed. Another case
involves a specific router. The post-processing step found that
MD5 is disabled on every session involving that router. It is
likely that router does not support MD5. It turns out some ASes
resist turning on MD5 because it adds delays to session re-es-
tablishment after a reset.

76 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

The rest of the violations are sessions with neighboring net-
works that require MD5. These sessions were not removed by
the post-processing step, and confirmed as errors.

Omitted export policies to external neighbors. In one net-
work, eBGP sessions that applied import policies also had ex-
port policies, except in few sessions. The operator confirmed
that these sessions were errors and described them as “very con-
cerning.” The absence of export policies can result in a list of
undesired effects, such as unintentional transit service.

Missing incoming prefix-list. A local network policy requires
a prefix-list to be applied on all incoming external BGP sessions.
The prefix-list turns out to be a sanity check that discards route
announcements to private IP address. Few BGP sessions in this
network violate this policy. One version of a correct route map
consists of the following:

route map from_abc permit 50
match ip address prefix-list sanity
match community
set local-preference 90
set comm-list delete
set community additive

One version of the violations is as follows:
route map from_bcd permit 50
set local-preference 100
set comm-list delete
set community additive

Although the two route maps above are different in several
places—different local preference values, match community
statement in the first but not the second—Minerals is able to
detect similarities in parts of the route maps and points out the
missing prefix-list statement. As mentioned before, Minerals
do not require routing policies to be identical in order to find
inconsistencies because association rules mining can work on
subsets of attributes defining a policy.

Missing outgoing prefix-list. Similar to the above, a local net-
work policy requires a prefix-list to be applied on all outgoing
external BGP sessions. The prefix-list is also a sanity check.
In IOS, a match ip address prefix-list sanity
is used. A number of BGP sessions are missing this statement.

Missing communities. 45% (9/20) of all the confirmed errors
related to routing policies are related to communities. A number
of these errors are accidental omission of community tagging,
which lead to several undesired outcomes. In two cases, missing
communities prevent routes from being advertised to a set of
peers. Since these two peers each have two eBGP sessions to
the network and the absence of community is only affecting one
eBGP session, routes are still advertised to the peers. However,
if the BGP session is to be temporarily disabled (e.g., for mainte-
nance purposes), such misconfiguration will affect the connec-
tivity of the peers.

In another instance, one eBGP session was lacking a commu-
nity which prevented the intended routes to be advertised.
Further analysis revealed that the presence of another commu-
nity was advertising the desired routes. The operator ex-
plained that the network was going through a routing policy
change. The tagging of routes coming from commodity peers
was modified to allow more flexible customizations. However,
sessions that are not updated in a timely manner can lead to un-

desired effects. As an example, a neighbor may be added and its
routes may be tagged with community to be re-advertised to
a set of neighbors. Sessions still relying on the old community

may not receive the newly added routes.
Incorrect community-list definitions. In a number of routers,

a community-list is incorrectly defined.
ip community-list 50 permit permit
regexp

The repetition of the word “ ” is an error. While a syntax-
based configuration checker can also detect this type of error
with a specific rule looking out for “ ”, Minerals
allow us to detect syntactical abnormalities using the same al-
gorithm. In this case, a large number of BGP sessions have this
error and a few sessions have the intended definitions. Minerals
highlighted the errors as the rule and the violations are actually
the correct configurations.

ip community-list 60 permit regexp

As a consequence of this error, routes that are supposed to be
matched (i.e., routes that carry communities matchingregexp)
and that should receive a set of actions, will not. This is because
the community-list 50 will only match routes that include both
communities permit and regexp. However, there is no com-
munity with the value permit.

Inconsistent community-list definition. A community-list was
defined in the same way in 18 routers, but was slightly different
in another router. It turned out that the definition is being up-
dated but the modification is not complete when we carried out
our evaluation.

Common definition (present in 18 routers)
ip community-list 190 permit
100:6550[1–9]
ip community-list 190 permit
100:6551[0–4]

Outlier (present in one router)
ip community-list 190 permit
100:6550[1–9]
ip community-list 190 permit
100:6551[0–9]

The outlier in this case is the intended definition, thus all other
definitions should be updated. As a consequence of this error,
routes that include communities 100:65515, 100:65516,
100:65517, 100:65518, or 100:65519 will not receive
the intended set of actions in the misconfigured routers.

B. Confirmed “Needs Fix” in Second Phase

In the second phase, we gradually decrease the value of
of the datasets where was high (e.g.,

0.97). We analyze the additional violations and we take into
consideration the previous feedback from the operators to
discard the false positives.

A number of errors consist of violations of rules previously
described (e.g., missing prefix-list, missing MD5, etc.)

Additionally, we detected the following new error types.
Missing communities: We discovered additional missing

communities with diverse consequences. In a case, prefixes to
be aggregated are to be tagged with specific communities and

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 77

filtered out at the egress routers. The absence of the commu-
nities on certain routes affected route aggregation and resulted
in the advertisement of some of the more specific prefixes.
One interesting error impacted accounting. As communities
control route announcement, a missing community prevented a
more specific route from reaching an edge router that performs
accounting. In this case, the lack of proper tagging does not
affect connectivity, but breaks billing for the network.

Missing outgoing filter. The local network policy treats a set
of neighboring ASes differently and does not advertise certain
routes to them. The outgoing route maps to these networks
therefore typically start with the following:

route map to_abc deny 10
match community nwB_no_export

The route map to one of these special networks mistakenly lacks
this match statement. One strength of Minerals is that it can
detect such outliers without knowing the meaning of the state-
ments involved. Minerals does not need to understand the func-
tion of the community-list nwB_no_export.

Typos in community-list definitions. In one router, there is a
typo in a community-list definition. The local AS number is 123,
and the typo is in one of the digits, making it 124:
community core_members [123:100 124:101]
Distribution of internally originated routes. One of the an-

alyzed networks advertised its internal routes to a selected set
of neighbors through amatch prefix-list internal-
routes command in which the prefix-list listed all the internal
prefixes. This configuration is being changed and internal routes
are now tagged with a specific community at origination. The
configurations are updated to include a match community
command to allow the propagation of internal routes to the de-
sired parties. We found a number of BGP sessions still having
the initial configurations. When match community is acci-
dentally omitted in some of the sessions, some internal routes
may be missing from the route advertisements. More specifi-
cally, internal routes not listed in the outdated prefix-list cannot
be forwarded to the neighbors.

Transit service. In one network, Minerals found a research
peer is receiving transit service for a wide range of prefixes.
Usually, only customer routes are advertised to peers. This con-
figuration does not violate the local network policies as it is a
special case arrangement for a certain type of peers, but it is not
a permanent situation.

C. False Alarms

Most of the false alarms in the BGP instance type mainly
consist of highly customized routing policies. In one network,
there are a number of neighbor ASes that are multi-homed, only
wanting to accept certain routes. Knowing that the configura-
tions to these neighbors are unique and significantly different
from the rest of the configurations, we could have removed them
from our evaluation. However, we included them. A number of
errors are detected on the sessions to these ASes, such as acci-
dental omission of prefix-lists.

The false alarms in the user-account part of the configuration
consisted of a number of special accounts created for some cus-
tomers. These accounts presented different privilege levels than
the other existing accounts and were therefore highlighted.

VI. LIMITATIONS OF MINERALS

Minerals is simple to use, does not require any a priori
model, and can detect violations of local network-specific
policies without the need for customization. The scope of errors
that can be detected is not restricted by predefined rules. We be-
lieve that Minerals could work in conjunction with the existing
rules-based solutions to enhance misconfiguration detection.
While existing methods are very efficient in identifying design
errors, Minerals can highlight misconfigurations that would be
difficult to pinpoint with a rules-based solution. For example,
Minerals can identify the violations of the following policies:
user is limited to privilege ; routes with communities
must be filtered; routes with communities must be assigned
a local preference ; etc. The detection of these errors through
rules-based methods would require an intensive customization
since the community values, the local preferences, and the
usernames are network-specific.

However, Minerals also presents a number of limitations.
• Error types. It cannot detect errors in parameters that are

specific and do not form a pattern. As an example, border
routers connected to customers often apply prefix-lists and
access-lists to limit the received signaling and traffic. Be-
cause each router may be connected to a different customer,
Minerals cannot validate the correctness of the listed IP ad-
dresses. Also, Minerals may not find certain design errors
(e.g., BGP sessions not forming a full mesh). Rules-based
solutions are better suited to detect this latter category of
errors.

• Parser. Minerals first needs to parse the configurations
files. However, there are different versions of the operating
systems (OS) and each version presents its own syntax.
Therefore, the parser needs to cover the different possible
grammars of the OS versions present in the analyzed net-
work. This issue is not specific to our proposed approach,
but is present in all methods that rely on the analysis of con-
figuration files. We believe that this issue can be resolved in
the future through the support of management models that
offer a vendor independent representation of the configu-
rations (e.g., [14]). It is important to note that even though
the proposed approach relies on parsed data, it can still de-
tect syntax errors as illustrated by the results in Section V.
More specifically, the error must be parsed unchanged into
the intermediate representation and be an anomaly out of a
pattern.

• Thresholds. The proposed approach relies on a number of
thresholds (e.g., ,) which affect the
accuracy of the results. A low increases the
number of false alarms, while a high may miss
errors. As an example, in one network, a user was lim-
ited to a specific privilege level. A fraction of its accounts
were mistakenly assigned a higher privilege, but because
the number of misconfigured accounts was large, the policy
was not identified and the violation not raised. We pro-
posed a number of heuristics to determine the thresholds,
and future research can investigate additional methods.

• Identification and definition of attributes. The selection and
definition of the attributes determines the quality of the re-

78 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

sults. Whether the value of an attribute should be taken as
is, abstracted into a group, or converted into a Boolean de-
termines the types of errors that can be detected. These de-
cision steps strongly rely on the domain knowledge. How-
ever, the selection and definition of the attributes only need
to be done once by the implementer of Minerals who pos-
sesses domain knowledge of router and network configu-
rations, and it can then be used for all networks.

VII. DISCUSSION AND FUTURE WORK

Minerals was successful in detecting a number of errors that
would have been missed by other techniques. The operators who
experimented with it found Minerals helpful and provided pos-
itive feedback. The extension of the model with additional at-
tributes can help to unearth further mistakes. The analysis of
statistical properties of router configurations appears to be a
promising approach to assist operators in detecting mistakes.

We are exploring adding attributes and extending the number
of instance types to broaden the scope of errors and areas where
Minerals can be applied.

The analysis of the configurations over the temporal dimen-
sion could possibly reveal additional misconfigurations not de-
tected by snapshot analysis. We have started to analyze suc-
cessive snapshots of the configurations to expose patterns of
change. We took monthly snapshots of the DC and HPR con-
figurations from June 2004 through March 2006. We analyzed
the evolution of user accounts on the routers and found that a
handful of accounts are rotated regularly: a username would be
added to almost all routers at about the same time, then deleted
some time later, and replaced by another username. This turns
out to be backdoor accounts that are created to ensure manage-
ment access during times of failure, DoS, or planned mainte-
nance events. Data mining can be applied to discover outliers in
this pattern: e.g., routers that are misconfigured during rotation
which either have multiple backdoor accounts, or new routers
that are overlooked and have no backdoor accounts. An anal-
ysis over the temporal dimension can pick out these anomalies.

ACKNOWLEDGMENT

I. Suilaiman, S. Rayanchu and S. Kim contributed to the
implementation of the configuration parser. The authors thank
Yongwon Lee for all his comments and suggestions. They would
also like to express their gratitude to K. Lindahl, G. Kaplan,
and others at CNS for providing access to Berkeley’s config-
uration files, for suggestions and for education about network
operations. Finally, they thank the anonymous reviewers and
the editor for all their comments.

REFERENCES

[1] A. Wool, “A quantitative study of firewall configuration errors,” IEEE
Computer, vol. 37, no. 6, pp. 62–67, Jun. 2004.

[2] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in Proc. NSDI, Boston, MA, May 2005, online.

[3] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP mis-
configuration,” in Proc. ACM SIGCOMM, Pittsburgh, PA, Aug. 2002,
pp. 3–16.

[4] B. J. P. Alin, C. Popescu, and T. Underwood, “Anatomy of a leak:
AS9121 (or, “How we learned to start worrying and hate maximum
prefix limits”),” presented at the NANOG34 Meeting, Seattle, WA,
May 2005.

[5] A. Feldmann and J. Rexford, “IP network configuration for intradomain
traffic engineering,” IEEE Network, vol. 15, no. 5, pp. 46–57, Sep./Oct.
2001.

[6] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “The cutting EDGE of IP router configuration,” presented
at the ACM SIGCOMM HotNets-II Workshop, Cambridge, MA, Nov.
2003.

[7] The Router Audit Tool (RAT). [Online]. Available: http://www.cisecu-
rity.org/bench cisco.html

[8] K. El-Arini and K. Killourhy, “Bayesian detection of router config-
uration anomalies,” presented at the ACM SIGCOMM Workshop on
Mining Network Data (MineNet’05), Philadelphia, PA, Aug. 2005.

[9] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Green-
berg, “Routing design in operational networks: A look from the inside,”
in Proc. ACM SIGCOMM, Portland, OR, Aug. 2004, pp. 27–40.

[10] “Router Security Configuration Guide System and Network At-
tack Center” National Security Agency, 2003 [Online]. Available:
http://www.nsa.gov/snac/routers/cisco scg-1.1b.pdf

[11] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford, “On static reachability analysis of IP networks,”
in Proc. IEEE INFOCOM, Miami, FL, May 2005, pp. 2170–2183.

[12] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM SIGMOD Int.
Conf. Management of Data, Washington, DC, May 1993, pp. 207–216.

[13] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.2: Efficient mining
algorithms for frequent/closed/maximal itemsets,” presented at the
IEEE Int. Conf. Data Mining (ICDM’04) Workshop on Frequent
Itemset Mining Implementations (FIMI’04), Brighton, U.K., Nov.
2004.

[14] Common Information Model (CIM) Standards, Distributed Manage-
ment Task Force, Inc. [Online]. Available: http://www.dmtf.org/stan-
dards/cim/

[15] Cisco Netsys Connectivity Service Manager. Cisco, San Jose, CA [On-
line]. Available: www.cisco.com

[16] D. Engler, D. Y. Chen, and A. Chou, “Bugs as inconsistent behavior:
A general approach to inferring errors in systems code,” presented at
the 18th ACM Symp. Operating Systems Principles (SOSP’01), Banff,
Canada, Oct. 2001.

[17] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000,
pp. 519–528.

Franck Le received the Diplome d’Ingenieur from
the Ecole Nationale Superieure des Telecommuni-
cations de Bretagne, France, in 2000. He is currently
working toward the Ph.D. degree at the Electrical
and Computer Engineering Department, Carnegie
Mellon University, Pittsburgh, PA.

From 2000 to 2005, he worked as a Research En-
gineer in the Mobile Networks Laboratory at Nokia
Research Center, Irving, TX.

Mr. Le received the National Science Foundation
Graduate Research Fellowship Award in 2006.

Sihyung Lee (S’08) received the B.S. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2000 and 2004, re-
spectively. He is currently working toward the Ph.D.
degree at Carnegie Mellon University, Pittsburgh,
PA.

He is currently working on simplifying network
management. His research interests include Internet
routing, routing security, network management and
measurement. His work is supported by the Samsung

Scholarship Foundation.

LE et al.: DETECTING NETWORK-WIDE AND ROUTER-SPECIFIC MISCONFIGURATIONS THROUGH DATA MINING 79

Tina Wong received the B.S. degree (1995) with
distinction in computer science from the University
of Washington, Seattle, in 1995, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of California at Berkeley in 1998 and 2000,
respectively.

She is a faculty member in the Information Net-
working Institute and a System Scientist at CyLab
and ECE, all part of Carnegie Mellon University,
Pittsburgh, PA. From 2000 to 2002, she was a
Research Scientist at Hewlett Packard Laboratories,

and worked on a collaboration with NTT DoCoMo on streaming media services
for next-generation mobile devices. From 2002 to 2004, she was a member
of the Network Science Department at Packet Design, Palo Alto, CA, during
which she worked with a stellar group of people on various aspects of routing
analytics, including a product. Her current research interests include simpli-
fying network management, protecting the Internet routing infrastructure, and
secure management of sensor networks.

Hyong S. Kim received the B.Eng. (Honours) degree
in electrical engineering from McGill University in
1984, and the M.A.Sc. and Ph.D. degrees in electrical
engineering from the University of Toronto, Toronto,
ON, Canada, in 1987 and 1990, respectively.

Since 1990, he has been with Carnegie Mellon
University (CMU), Pittsburgh, PA, where he is
currently the Drew D. Perkins Chaired Professor of
Electrical and Computer Engineering. His primary
research areas are advanced switching architectures,
fault-tolerant, reliable, and secure network architec-

tures, and optical networks. His Tera ATM switch architecture, developed at
CMU, has been licensed for commercialization. In 1995, he founded Scalable
Networks, a Gigabit-Ethernet switching startup. Scalable Networks was ac-
quired by FORE Systems in 1996. In 2000, he founded AcceLight Networks, an
optical switching startup, and was CEO until 2002. He is an author of over 70
published papers and holds more than 10 patents in networking technologies.

Dr. Kim was an editor for the IEEE/ACM TRANSACTIONS ON NETWORKING

from 1995 to 2000. He was the recipient of the National Science Foundation
Young Investigator Award in 1995.

Darrell Newcomb received the B.S. degree (1999) in information technology
from the Rochester Institute of Technology, Rochester, NY, in 1999.

He is a Network Engineer with the Corporation for Education Network Initia-
tives in California (CENIC). He is currently providing technical leadership for
the Transit Rail and CalREN networks from CENIC’s offices in Cypress, CA.
From 1999 to 2000, he was a Network Architect with NTT Multimedia Com-
munications Laboratories, and was with Virage from 2000 to 2002.

