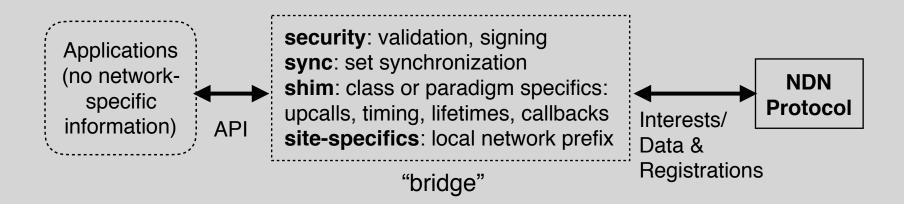


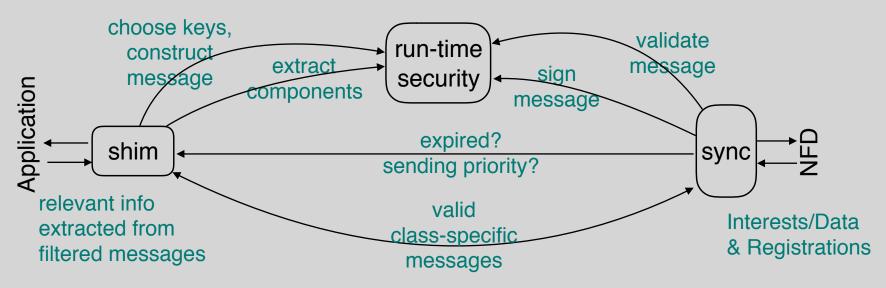
Building a Bridge from Applications to NDN


Kathleen Nichols NDN Community Meeting September 5, 2019

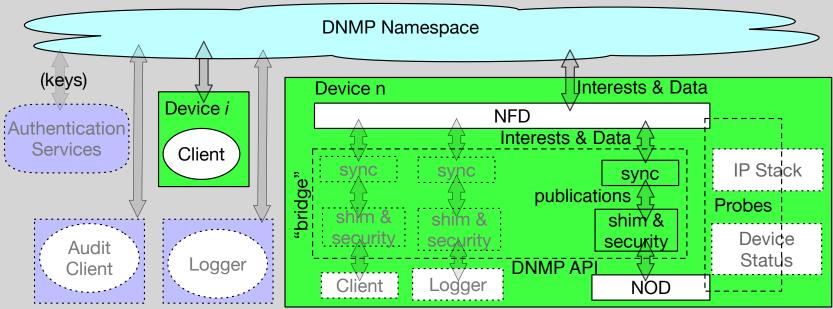
©Pollere, Inc.

Why I like the NDN Architecture

- Multicast network protocol with security as first class citizen
- Interest/Data pairing guarantees flow balance for multisource /multi-destination traffic (unlike IP multicast)
- Signed Data requirement basis for strong security
- Trust schemas and Name structure can provide rich security models
- Data transport based on set synchronization rather than conversation provides potential for efficient communications on today's broadcast channels
- User-space transport for Application Layer Framing


Toward portable, easy-to-write applications

- Applications need help, but not a straight-jacket
- Applications belong to a class or communications paradigm that provides the transport functionality and an API that only requires the application-relevant information
- A "bespoke transport" should provide class specificity using common functional modules and frameworks that provide validity checks for data, both security and expiry, to construct valid packets. Configured with site-specifics (networks, keys)


Constructing a bridge

Functional modules, not rigid layers; use upcalls to provide signing, validation, lifetime, and priority information

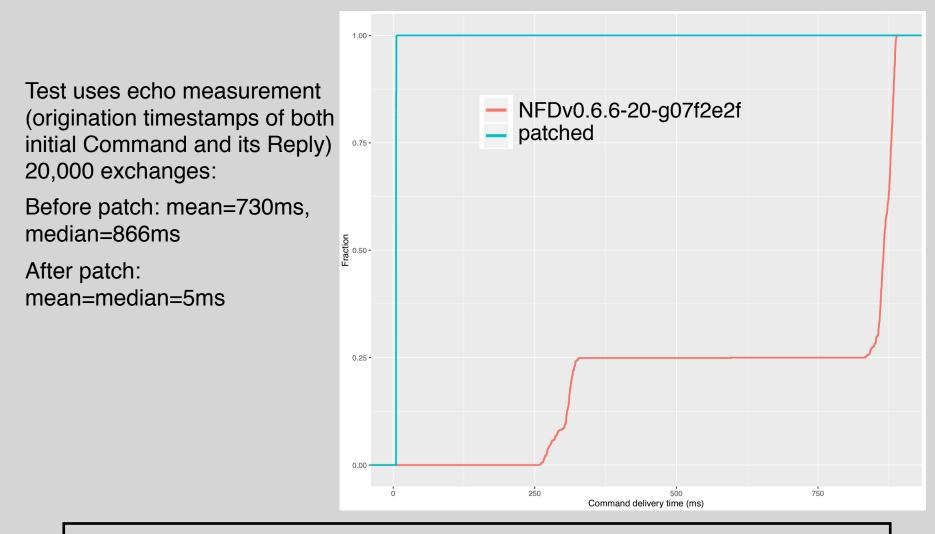
- API passes application-relevant information
- Shim and security modules apply paradigm-specific information and sitespecific configurations
- These create and parse requests and messages (e.g. publications) that are specific to this paradigm that the sync translates to and from Interests and Data exchanged with NFD

Distributed Network Measurement Protocol

- Clients, NODs (Network Observer Daemons), Loggers, Audits are applications.
- DNMP API provides a topic-based communications paradigm, passing commands and their targets and a callback for results, receives commands, passes results
- DNMP "bridge" enforces trust schema and provides topicspecific logic, creating and parsing publications

Holes in the bridge: Sync

- Available Syncs use producer/consumer model
- Our goal is MQTT-like sync utilizing NDN to be brokerless and broadcast-efficient
- Easier to write new publish/subscribe sync, syncps
 - Interests sent that give Topic and IBLT that indicates what publications sender has
 - Receivers put all new publications in Topic in a Data packet
 - Publications have a limited lifetime and a timestamp that bounds state needed to prevent replay, bounds publication lifetime
 - Names constructed to reflect their functionality and the trust schema, e.g. command/reply akin to ephemeral RPC request/response
 - DNMP's trust schema applied to the publications sent and received from syncps, not the packets on the wire


Holes in the bridge: performance issues

- "This doesn't work the way you think it does"
- The NFD code doesn't match the architecture, particularly devastating impact on multicast
 - Interests are not held in PIT until timeout, but only put in PIT on forward
 - PIT not checked on new FIB entry, e.g. new registration
 - LP::Nacks cause premature Interest death
 - No Interest suppression reduces efficiency
 - RETX suppression causes premature Interest death
- Patches completed for these problems
 - Mostly involve *removing* code
 - Insufficient broadcast testing is being done on codebase additions

Patch fixes and more explanation at github.com/pollere/NDNpatches

©Pollere, Inc.

Patches for LP::Nack and PIT discard issues

Takeaway: rigorous application-driven testing and measurement must be performed so that applications get known quantity

©Pollere, Inc.

Specifying Trust Rules (some examples)

BMS Root Key: /BigCompany/BMS/key Signs \ Building Key: /BigCompany/Building1/key Signs \ Device Key: /BigCompany/Building1/Electricity/Panel1/key Signs \ Device Data: /BigCompany/Building1/Electricity/Panel1/Heater/Voltage/<seq#> (a) Sensor certification chain

BMS Root Key: /BigCompany/BMS/key Signs Department Key: /BigCompany/DepartmentA/key Signs Employee Key: /BigCompany/DepartmentA/Alice/key Signs User Device Key: /BigCompany/DepartmentA/Alice/Phone/key (b) User device certification chain

BMS Root Key: /BigCompany/BMS/key Signs & Building Key: /BigCompany/Building1/key Signs Pub-Sub Group Key: /BigCompany/Building1/Electricity/key Signs Repo Key: /BigCompany/Building1/Electricity/Repo/Repo1/key Signs Repo Data: /BigCompany/Building1/Electricity/Repo/Repo1/<seq#> (c) Pub-sub repo certification chain

"Publish-Subscribe Communication in Building Management Systems over Named Data Networking"

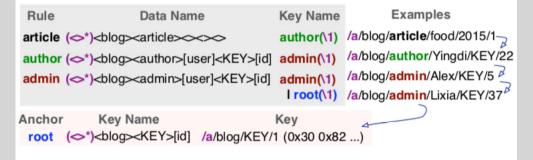
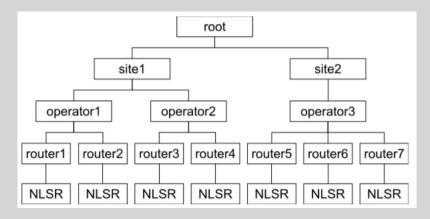



Figure 7: Trust schema the blog website framework with "/a/KEY/1" as the trust anchor

"Schematizing Trust in Named Data Networking"

"Secure Link State Routing Protocol for NDN" (NLSR)

©Pollere, Inc.

DNMP publication names and trust rules

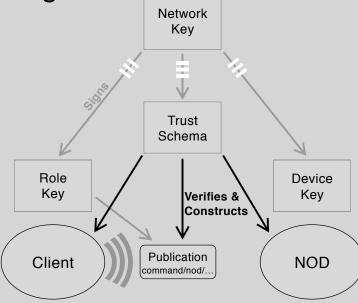
<domain><target>command<srcID><directive><timestamp> <domain><target>reply<cmdID><dCnt><rSrcID><timestamp> command pub definition and signing chain domain = <root>/**dnmp** = <domain>/nod/<nodSpec>/command/ cpub root (or networkID) identifies the particular network <roleType>/<ID>/<origin>/probe/<pType>/ target = **nod**/<nodSpec> where directive is to be performed Args>/<timestamp> *nodSpec* used to specify NOD(s) (e.g., **all**, **local**, *<identity>*) = <domain>/<roleType>/<ID>/<_key> roleCert command or reply exact value denoting Topic dnmpCert = <domain>/< key> srcID = <roleType>/<ID>/<origin> identifies publisher domain = <root>/dnmp *roleType* is operator, user, or guest cpub <= roleCert <= dnmpCert <= netCert ID role-specific identifier **reply** pub definition and signing chain origin identifies the publication origin network-attached device directive = <*commandType*>/<*probeType*>/<*probeArgs*> rpub = <cpub command => reply>/<dCnt>/<rSrcID>/ <rtimestamp> *commandType*: only currently defined type is **probe** = <domain>/nod/<nodID>/< key> nodCert *probeType*: descriptive name of the particular probe devCert = <root>/device/<devID>/<_key> probeArgs: single component, makes command more specific configCert = <root>/config/<configID>/<_key> timestamp = *<UTC microsecond timestamp>* (creation time) rpub <= nodCert <= deviceCert <= configCert <= netCert cmdID = <*srcID*>/<*directive*>/<*timestamp*> exact copy of **command**'s last three groups Names are "verbose" for debugging $dCnt = \langle 0 \rangle$ or $\langle k | n \rangle$ exact value of **0** is used if only this Data packet in the reply Redundant components can be <kln> indicates the kth Data packet out of a total of n removed for deployment rSrcID = **nod**/<*nodID*>, replying entity nod*ID* identifier uniquely derived from host and/or NFD

From "Lessons Learned Building a Secure Network Measurement Framework using Basic NDN" *to appear in* Proceedings of ACM ICN 2019.

©Pollere, Inc.

Holes in the bridge: applying trust rules/schema

- The regular expression language for validator input doesn't mirror the human specification and can't crossvalidate rules
- At best, existing validator only checks *some* components, *some* Names
- But trust rules *define* Names and signing relationships and should be usable to*:
 - check soundness of the trust schema
 - construct packets and automatically choose signing keys
 - validate *entire* signing chain, syntax and authorizations


^{*}See "Lessons Learned" paper and github.com/pollere/versec (later this month)

RegEx security section of nlsr.conf

			,
security	p-regex	trust an all an	}
{	^ <localhop>([^<nlsr><lsa>]*)<nlsr><lsa>(<>*)<></lsa></nlsr></lsa></nlsr></localhop>	trust-anchor	}
validator		{	
{	p-expand \\1\\2	type file	; cert-to-publish "root.cert" ; optional, a file
rule	}	file-name "root.cert"	containing the root certificate
{	}	}	; Only the router that is designated
id "NLSR Hello Rule"	}	}	to publish the root cert
for data	}		; needs to specify this
filter		prefix-update-validator	
{	rule	{	; cert-to-publish "site.cert" ; optional, a file containing
type name	{	rule	the site certificate
regex ^[^ <nlsr><info>]*<nlsr><info><><>\$</info></nlsr></info></nlsr>	id "NLSR Hierarchy Exception Rule"	{	; Only the router that is designated
}	for data	id "NLSR ControlCommand Rule"	to publish the site cert
checker	filter	for interest	; needs to specify this
{	{	filter	,
type customized	type name	Į	; cert-to-publish "operator.cert" ; optional, a file
sig-type rsa-sha256	regex	type name	containing the operator certificate
key-locator	^[^ <key><%C1.Router>]*<%C1.Router>[^<key><</key></key>	; / <pre>command- ; /<pre>command-</pre></pre>	; Only the router that is
Key-locator	nlsr>]* <key></key>	verb>/ <control-parameters></control-parameters>	designated to publish the operator
1			
type name	}	;/ <timestamp>/<random-value>/<signed-< td=""><td>; cert needs to specify this</td></signed-<></random-value></timestamp>	; cert needs to specify this
hyper-relation	checker	interests-components>	
{	{	regex ^ <localhost><nlsr><prefix-< td=""><td>cert-to-publish "router.cert"; required, a file</td></prefix-<></nlsr></localhost>	cert-to-publish "router.cert"; required, a file
k-regex ^([^ <key><nlsr>]*)<nlsr><key><>\$</key></nlsr></nlsr></key>	type customized	update>[<advertise><withdraw>]<><>>\$</withdraw></advertise>	containing the router certificate.
k-expand \\1	sig-type rsa-sha256	}	}
h-relation equal	key-locator	checker	
p-regex	{	{	
^([^ <nlsr><info>]*)<nlsr><info>>>>\$</info></nlsr></info></nlsr>	type name	type customized	
p-expand \\1	hyper-relation	sig-type rsa-sha256	
}	{	key-locator	
}	k-regex	{	
}	^([^ <key><%C1.Operator>]*)<%C1.Operator>[^<k< td=""><td>type name</td><td></td></k<></key>	type name	
3	EY>]* <key><>\$</key>	regex	
3	k-expand \\1	^([^ <key><%C1.Operator>]*)<%C1.Operator>[^<k< td=""><td></td></k<></key>	
rule	h-relation equal	EY>]* <key></key>	
f and	p-regex		
id "NLSR LSA Rule"	^([^ <key><%C1.Router>]*)<%C1.Router>[^<key></key></key>	}	
for data]* <key>>>></key>	}	
		}	
filter	p-expand \\1		
{	}	rule	
type name	}	{	
regex ^[^ <nlsr><lsa>]*<nlsr><lsa></lsa></nlsr></lsa></nlsr>	}	id "NLSR Hierarchy Rule"	
}	}	for data	
checker		filter	
{	rule	{	
type customized	{	type name	
sig-type rsa-sha256	id "NLSR Hierarchical Rule"	regex ^[^ <key>]*<key></key></key>	
key-locator	for data	}	
{	filter	checker	
type name	{	{	
hyper-relation	type name	type hierarchical	
{	regex ^[^ <key>]*<key>>>>>>\$</key></key>	sig-type rsa-sha256	
k-regex ^([^ <key><nlsr>]*)<nlsr><key><>\$</key></nlsr></nlsr></key>	}		
k-expand \\1	checker		pecting you to read
h-relation equal	f		
; the last four components in the prefix should	type hierarchical	trust-anchor thore t	
			51 lines!
be <lsatype><seqno><version><segmentno></segmentno></version></seqno></lsatype>	sig-type rsa-sha256		
	3	type file	
	}	file-name "site.cert"	

A New Approach: Versatile Security Toolkit (VerSec)

- A language for expressing the trust rules and a compiler to check the rules that outputs a binary form trust schema
- Run-time security methods, *schemer*, for validation and building packets, also allow applications to reference Name components by names/tags

See: http://pollere.net/Pdfdocs/ICN-WEN-190715.pdf, https://vimeo.com/354013644

Example: VerSec compiler input for NLSR

NLSR schema (from github/named-data/NLSR/docs/<u>SECURITY-CONFIG.rst</u>)

site-specific config
net = ndn
site = edu/ucla

site-independent config

entities
operator = Operator/<opId>
rtr = Router/<rtrName>

packet names

(format from nlsr/src/hello_protocol.cpp)
3rd parameter is <net>/<site>/<rtr> prefix but stuck into one
component so it can't be validated.
hello = <net>/<_nsite>/<_ntr>/nlsr/INFO/<_rtr>/<_version>

(format from nlsr/src/lsdb.hpp)
discovery = <_seqNo>
segment = <_seqNo>/<_version>/<_segmentNo>

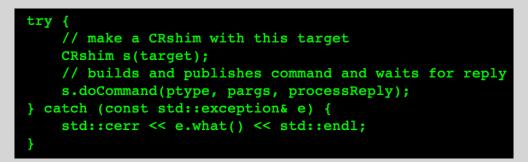
lsa = localhop/<net>/nlsr/LSA/<site>/<rtr>/<_type>/(<discovery>|
<segment>)

packet = <hello> | <lsa>

key names

<_KEY> is a built-in definition of the 4 parameters that terminate
an NDN key name: KEY/<_keyId>/<_issuerId>/<_version> (see
http://named-data.net/doc/ndn-cxx/current/specs/certificateformat.html)
This info is validated by the key's signature, not the schema

netCert = <net>/<_KEY>
siteCert = <net>/<site>/<_KEY>
opCert = <net>/<site>/<operator>/<_KEY>
rtrCert = <net>/<site>/<rtr>/<_KEY>
nlsrCert = <net>/<site>/<rtr>//nlsr/<_KEY>


signing chain

packet <= nlsrCert <= rtrCert <= opCert <= siteCert <= netCert</pre>

- Fifteen lines of code, fifteen lines of comments
- Not unlike the rule specifications

©Pollere, Inc.

omitted code to parse input line, set variables

note the use of component names

```
void processReply(const Reply& pub, CRshim& shim)
   const auto& c = pub.getContent();
   if (c.value size() > 0) {
       std::cout << std::string((const char*)(c.value()), c.value size()) << "\n";</pre>
   // Using the reply timestamps to print cli-to-nod & nod-to-cli times
   std::cout << "Reply " << to string(++nReply) << " timing (in sec.): "</pre>
             << "to NOD=" + to string(pub.timeDelta("rTimestamp", "cTimestamp"))
             << " from NOD=" + to string(pub.timeDelta("rTimestamp")) << std::endl;</pre>
   if (--count > 0) {
       // wait then launch another command
       timer = shim.schedule(interval, [&shim]() {
           shim.issueCmd(ptype, pargs, processReply);
       });
       return;
   if (target == "all") {
       // wait for more replies
       timer = shim.schedule(interval, []() { doFinish(); });
       return;
   doFinish();
```

Use of shim and schemer simplified DNMP Client

see:

github.com/pollere/DNMP

doFinish() for this client just exits

Status / Summary

- Started with NDN's roots: multicast and security
- These critical features need(ed) work
 - trust schema: usability and audits
 - set synchronization communication models
 - multicast strategy on mulitcast networks (*not* replicated unicast)
 - performance and behavior on wire (or over air)
- Co-development of DNMP and bespoke transport
 - NFD patches (more to come)
 - VerSec toolkit takes trust schema design to useful code
 - "bespoke transport" model of collection of functional modules that handle: Data transport, security validation, application class specificity
- Co-development and edge network starting point critical

Opinions

- Despite the prevalence of the hourglass in NDN papers, the "narrow neck" has not been respected
 - things added to the NDN protocol layer
 - no rich library of application-focused set synchronization transports
- NDN is unlikely to replace the Internet anytime soon, if ever, but offers a lot of promise for "edge" applications.
 - The edge is radio but not much work on testing or optimizing this
 - Data muling is a powerful feature, not in NFDv0.6.6-20-g07f2e2f
 - Walk first. Performance test with applications. Can't rely on simulator
- NDN offers the opportunity to get security right. Its architecture allows fine-grained role-based security
 - tools to make use of this are lacking
 - lack methods of *securing* the trust rules make the schema signable
 - use the schema at run-time (*schemer.hpp*) to access Name components so that changes in Names don't require changes in application code

Example VerSec compiler output

cmd = { /myhouse/dnmp/nod/local/command/user/<uID>/ <_c_MachineID>/probe/<_pID>/<_pArgs>/<_c_TimeStamp> /myhouse/ dnmp/nod/local/command/operator/<opID>/<_c_MachineID>/probe/ < pID>/< pArgs>/ <_c_TimeStamp> /myhouse/dnmp/nod/all/command/operator/<opID>/ <_c_MachineID>/probe/<_pID>/<_pArgs>/<_c_TimeStamp> /myhouse/ dnmp/nod/<_nodID>/command/operator/<opID>/<_c_MachineID>/probe/ <_pID>/<_pArgs>/ <_c_TimeStamp> } $roleCert = \{$ /myhouse/dnmp/user/<uID>/KEY/_/_/_/ /myhouse/dnmp/operator/<opID>/KEY/_/_/_ } dnmpCert = { /myhouse/dnmp/KEY/_/_/_ } $netCert = {$ /myhouse/KEY/_/_/_ } reply = { /myhouse/dnmp/nod/local/reply/user/<uID>/<_c_MachineID>/ probe/<_pID>/<_pArgs>/<_c_TimeStamp>/nod/ <nodID>/<_r_TimeStamp> /myhouse/dnmp/nod/local/reply/operator/ <opID>/<_c_MachineID>/probe/<_pID>/<_pArgs>/<_c_TimeStamp>/ nod/<nodID>/<_r_TimeStamp> /myhouse/dnmp/nod/all/reply/operator/ <pID>/<_c_MachineID>/probe/<_pID>/<_pArgs>/<_c_TimeStamp>/nod/ <nodID>/<_r_TimeStamp> /myhouse/dnmp/nod/<_nodID>/reply/operator/ <opID>/<_c_MachineID>/probe/<_pID>/<_pArgs>/ <_c_TimeStamp>/nod/<nodID>/<_r_TimeStamp> } $nodCert = \{$

```
/myhouse/dnmp/nod/<nodID>/KEY/_/_/_ }
```

deviceCert = { /myhouse/device/<devID>/KEY/_/_/_/ } $configCert = \{$ /myhouse/config/<confID>/KEY/_/_/_ } 30 netCert = { /myhouse/KEY/_/_/_/ } 13 unique literals (66 bytes): KEY(8) all(2) command(4) config(1) device(1) dnmp(12) local(4) myhouse(16) nod(13) operator(7) probe(8) reply(4) user(3) 5 unique refs (23 bytes): confID(1) devID(1) nodID(5) opID(7) uID(3) 6 unique params (46 bytes): c_MachineID(8) c_TimeStamp(8) nodID(2) pArgs(8) pID(8) r TimeStamp(4) reference map: uID: cmd[6](1) roleCert[3](1) opID: cmd[6](2,3,4) roleCert[3](2) nodID: nodCert[3] reply[13](1,2,3,4) devID: deviceCert[2] confID: configCert[2] validation chains: uID in cmd[6](1) validated by roleCert[3](1) opID in cmd[6](2,3,4) validated by roleCert[3](2) nodID in reply[13](1,2,3,4) validated by nodCert[3]