POLL , INC.
network architecture,
analysis & performance

Building a Bridge from
Applications to NDN

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Why | like the NDN Architecture

« Multicast network protocol with security as first class citizen

* Interest/Data pairing guarantees flow balance for multi-
source /multi-destination traffic (unlike IP multicast)

- Signed Data requirement basis for strong security

 Trust schemas and Name structure can provide rich
security models

 Data transport based on set synchronization rather than
conversation provides potential for efficient
communications on today’s broadcast channels

- User-space transport for Application Layer Framing

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Toward portable, easy-to-write applications

..

i security: validation, signing

......................

é%p:g?xgri Esync1 set synchronization E
5 specific : : shim: class or paradigm specifics: | — > NDN
" . upcalls, timing, lifetimes, callbacks |nterests/ Protocol

information) API

.......................

. site-specifics: local network prefix : pata &

” Registrations

« Applications need help, but not a straight-jacket

- Applications belong to a class or communications paradigm
that provides the transport functionality and an API that only
requires the application-relevant information

- A“bespoke transport” should provide class specificity using
common functional modules and frameworks that provide
validity checks for data, both security and expiry, to construct
valid packets. Configured with site-specifics (networks, keys)

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Constructing a bridge

Functional modules, not rigid layers; use upcalls to provide
signing, validation, lifetime, and priority information

run-time
security

«— expired?
sending priority?

choose keys,
constru

components

Application

relevant info
extracted from
filtered messages messages & Registrations

Interests/Data

- API passes application-relevant information

« Shim and security modules apply paradigm-specific information and site-
specific configurations

- These create and parse requests and messages (e.g. publications) that are
specific to this paradigm that the sync translates to and from Interests and
Data exchanged with NFD

©Pollere, Inc.

www.pollere.net

http://www.pollere.net

Distributed Network Measurement Protocol

g DNMP Namespace E
JAN A

1T
(keys) F va f Device n @lnterests & Data
""""""""" Device i A A NFED v .

Authentication: Interests & Data 4. ! i
. Services @ ,F,.‘.T.‘..@‘..‘::",:.‘..‘.@?:; --------------- viniy B EA aaeam
e = ! sync i : sync sync 1P Stack

R | L Ptk |
% 4/ 'E)D: _____ %\‘ ______ N <§_‘ ______ Y uth&thﬂS@ : x Probes :
;| BYi shim & i shim & L

G . = , shinV& |1 1.~
¢ oAudit S *i--S@%—fw-- ﬁe.g%riw.-f seoyty || 1! Device
L Ciient i & Logger it [N ey CIUDNMPAPL Ny T 1 Stats
. TR Client Logger | NOD !

+ Clients, NODs (Network Observer Daemons), Loggers, Audits
are applications.

- DNMP API provides a topic-based communications paradigm,
passing commands and their targets and a callback for results,
receives commands, passes results

- DNMP “pbridge” enforces trust schema and provides topic-
specific logic, creating and parsing publications

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Holes in the bridge: Sync

- Available Syncs use producer/consumer model

» Qur goal is MQTT-like sync utilizing NDN to be brokerless
and broadcast-efficient

- Easier to write new publish/subscribe sync, syncps

Interests sent that give Topic and IBLT that indicates what publications
sender has

Receivers put all new publications in Topic in a Data packet

Publications have a limited lifetime and a timestamp that bounds state
needed to prevent replay, bounds publication lifetime

Names constructed to reflect their functionality and the trust schema, e.g.
command/reply akin to ephemeral RPC request/response

DNMP’s trust schema applied to the publications sent and received from
syncps, not the packets on the wire

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Holes in the bridge: performance issues

“This doesn’t work the way you think it does”

The NFD code doesn’t match the architecture, particularly
devastating impact on multicast
Interests are not held in PIT until timeout, but only put in PIT on forward
PIT not checked on new FIB entry, e.g. new registration
LP::Nacks cause premature Interest death
No Interest suppression reduces efficiency
RETX suppression causes premature Interest death

Patches completed for these problems
Mostly involve removing code
Insufficient broadcast testing is being done on codebase additions

Patch fixes and more explanation at github.com/pollere/NDNpatches

©Pollere, Inc. www.pollere.net

http://www.pollere.net
http://github.com/pollere/NDNpatches

Patches for LP::Nack and PIT discard issues

1.00-

Test uses echo measurement

(origination timestamps of both N'f[Dr\]/O(-jG-6'20'907f292f
initial Command and its Reply) = = RECHUIIE
20,000 exchanges:

Before patch: mean=730ms,
median=866ms

After patch:
mean=median=5ms

0.25-

0.00

0 250 500 750
Command delivery time (ms)

Takeaway: rigorous application-driven testing and measurement must be
performed so that applications get known quantity

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Specifying Trust Rules (some examples)

BMS Root Key: /BigCompany/BMS/key
Signs \
Building Key: /BigCompany/Building1/key
Signs \
Device Key: /BigCompany/Building1/Electricity/Panel1/key
Signs -
Device Data: /BigCompany/Building1/Electricity/Panel1/Heater/Voltage/<seq#>

(a) Sensor certification chain

BMS Root Key: /BigCompany/BMS/key
Signs .
Department Key: /BigCompany/DepartmentA/key
Signs \
Employee Key: /BigCompany/DepartmentA/Alice/key
Signs N
User Device Key: /BigCompany/DepartmentA/Alice/Phone/key
(b) User device certification chain

BMS Root Key: /BigCompany/BMS/key
Signs \
Building Key: /BigCompany/Building1/key
Signs
Pub-Sub Group Key: /BigCompany/Building1/Electricity/key
\ Signs
Repo Key: /BigCompany/Building1/Electricity/Repo/Repo1/key

Signs
Al

Repo Data: /BigCompany/Building1/Electricity/Repo/Repo1/<seq#>

(c) Pub-sub repo certification chain

“Publish-Subscribe Communication in
Building Management Systems over
Named Data Networking”

©Pollere, Inc.

Key Name Examples

author(\1) /a/blog/article/food/2015/1?

Rule Data Name

article (<*)<blog><article><><><>
author (<>*)<blog><author>{user]<KEY>[id] admin(\1) /a/blog/author/Yingdi/KEY/22

admin (<>*)<blog><admin>[user]<KEY>[id] admin(\1) /alblog/admin/Alex/KEY/5 #
I root(\1) /a/blog/admin/Lixia/KEY/37

Key //)

Anchor Key Name -
root (<>*)<blog><KEY>[id] /a/blog/KEY/1 (0x30 0x82 ...)

Figure 7: Trust schema the blog website framework with
“/a/KEY/1” as the trust anchor

“Schematizing Trust in Named Data Networking”

root

|router1‘ |router2| [router3| Irouter4] |router5] [routerS‘ |router7

operator2

i)

| | | | |

| NLSR | | NLSR | | NLSR | | NLSR | | NLSR | | NLSR | | NLSR |

“Secure Link State Routing Protocol for
NDN” (NLSR)

www.pollere.net

http://www.pollere.net

DNMP publication names and trust rules

<domain><target>command<srcID><directive><timestamp>

<domain><target>reply<cmdID><dCnt><rSrcID><timestamp>
. ___|

domain = <root>/dnmp
root (or networkID) identifies the particular network
target = nod/<nodSpec> where directive is to be performed

nodSpec used to specify NOD(s) (e.g., all, local, <identity>)

command or reply exact value denoting Topic

srelD = <roleType>/<ID>/<origin> identifies publisher

roleType s operator, user, or guest
ID role-specific identifier
origin identifies the publication origin network-attached device

directive = <commandType>/<probeType>/<probeArgs>

commandType: only currently defined type is probe
probeType: descriptive name of the particular probe
probeArgs: single component, makes command more specific

timestamp = <UTC microsecond timestamp> (creation time)

cmdID = <srclD>/<directive>/<timestamp>

exact copy of command’s last three groups

dCnt = <0> or <kln>

exact value of 0 is used if only this Data packet in the reply
<kln> indicates the kth Data packet out of a total of n
rSrcID = nod/<nodID>, replying entity

nod/D identifier uniquely derived from host and/or NFD

cpub =

roleCert
dnmpCert
domain

rpub =

nodCert
devCert
configCert =

command pub definition and signing chain

<domain>/nod/<nodSpec>/command/
<roleType>/<ID>/<origin>/probe/<pType>/
<pArgs>/<timestamp>
<domain>/<roleType>/<ID>/<_key>
<domain>/<_key>

<root>/dnmp

cpub <= roleCert <= dnmpCert <= netCert

reply pub definition and signing chain

<cpub command => reply>/<dCnt>/<rSrcID>/

<rtimestamp>
<domain>/nod/<nodID>/<_key>

<root>/device/<devID>/<_key>
<root>/config/<configID>/<_key>

rpub <= nodCert <= deviceCert <= configCert <= netCert

- Names are “verbose” for debugging
- Redundant components can be
removed for deployment

From “Lessons Learned Building a Secure Network Measurement Framework using Basic

NDN” to appear in Proceedings of ACM ICN 2019.

©Pollere, Inc.

www.pollere.net

http://www.pollere.net

Holes in the bridge: applying trust rules/schema

- The regular expression language for validator input
doesn’t mirror the human specification and can’t cross-
validate rules

At best, existing validator only checks some components,
some Names

 But trust rules define Names and signing relationships
and should be usable to*:
check soundness of the trust schema
construct packets and automatically choose signing keys
validate entire signing chain, syntax and authorizations

*See “Lessons Learned” paper and github.com/pollere/versec (later this month)

©Pollere, Inc. www.pollere.net

http://www.pollere.net
http://github.com/pollere/versec

RegEXx security section of nisr.conf

security
{
validator

{

rule

{
id "NLSR Hello Rule"
for data
filter
{

type name
regex A[A<nlsr><INFO>]*<nlsr><INFO><><>$

checker
{
type customized
sig-type rsa-sha256
key-locator
{
type name
hyper-relation

k-regex A([A<KEY><nlsr>]*)<nlsr><KEY><>$

k-expand \\1

h-relation equal

p-regex
A([A<nlsr><INFO>]*)<nlsr><INFO><><>$

p-expand \\1

¥
¥
}

rule

{
id "NLSR LSA Rule"
for data
filter
{

type name
regex A[A<nlsr><LSA>]*<nlsr><LSA>

checker
{
type customized
sig-type rsa-sha256
key-locator
{
type name
hyper-relation

k-regex A([A<KEY><nlsr>]*)<nlsr><KEY><>$

k-expand \\1

h-relation equal

; the last four components in the prefix should
be <IsaType><seqNo><version><segmentNo>

p-regex
A<localhop>([A<nlsr><LSA>]*)<nlsr><LSA>(<>*)<>
>><S$

p-expand \\I\\2

}
}
}

rule

{
id "NLSR Hierarchy Exception Rule"
for data
filter
{
type name
regex
A"<KEY><%C1.Router>]*<%C1 Router>[A<KEY><
nlsr>]*<KEY><><><>$

checker
{
type customized
sig-type rsa-sha256
key-locator
{
type name
hyper-relation
{
k-regex
N["<KEY><%C1 .Operator>]*)<%C]1.Operator>[A<K
EY>]*<KEY><>$
k-expand \\1
h-relation equal
p-regex
A[A<KEY><%C1 Router>]*)<%C1.Router>[A<KEY>
*<KEY><><><>$
p-expand \\1

}
¥
}

rule

id "NLSR Hierarchical Rule"
for data

filter

{

type name
regex A[A<KEY>]*<KEY><><><>$

checker

{
type hierarchical
sig-type rsa-sha256

trust-anchor
{
type file
file-name "root.cert"
¥
}

prefix-update-validator

{

rule

{
id "NLSR ControlCommand Rule"
for interest
filter
{
type name
; I<prefix>/<management-module>/<command-
verb>/<control-parameters>
; /<timestamp>/<random-value>/<signed-
interests-components>
regex A<localhost><nlsr><prefix-
update>[<advertise><withdraw>]<><><>$
}
checker
{
type customized
sig-type rsa-sha256
key-locator
{
type name
regex
M[A<KEY><%C1 .Operator>]*)<%C1.Operator>[A<K
EY>]*<KEY><>$
b
}
}

rule

id "NLSR Hierarchy Rule"
for data

filter

{

type name
regex A[A<KEY>]*<KEY><><><>$

checker

{
type hierarchical

}
}

; cert-to-publish "root.cert" ; optional, a file
containing the root certificate
; Only the router that is designated
to publish the root cert
; needs to specify this

; cert-to-publish "site.cert" ; optional, a file containing
the site certificate
; Only the router that is designated
to publish the site cert
; needs to specify this

; cert-to-publish "operator.cert" ; optional, a file
containing the operator certificate
; Only the router that is
designated to publish the operator
; cert needs to specify this

cert-to-publish "router.cert" ; required, a file
containing the router certificate.

i

sig-type rsa-sha256

y Not expecting you to read

trust-anchor

; these 151 lines!

type file

file-name "site.cert"

A New Approach: Versatile Security Toolkit (VerSec)

- Alanguage for expressing the trust rules and a compiler to
check the rules that outputs a binary form trust schema

* Run-time security methods, schemer, for validation and

building packets, also allow applications to reference Name
components by names/tags

Network
Key

Trust
Schema

Role Device
Key Verifies & Key
Constructs
Publication
mmmmmm d/nod/...

See: http://pollere.net/Pdfdocs/ICN-WEN-190715.pdf, https://vimeo.com/354013644

©Pollere, Inc. www.pollere.net

http://www.pollere.net
http://pollere.net/Pdfdocs/ICN-WEN-190715.pdf
https://vimeo.com/354013644

Example: VerSec compiler input for NLSR

NLSR schema (from github/named-data/NLSR/docs/SECURITY- Isa = localhop/<net>/nlsr/LSA/<site>/<rtr>/<_type>/(<discovery>|
CONFIG.1st) <segment>)
site-specific config packet = <hello> | <lsa>
net = ndn
site = edu/ucla # key names
site-independent config # <_KEY> is a built-in definition of the 4 parameters that terminate
an NDN key name: KEY/<_keyld>/<_issuerld>/<_version> (see
entities # http://named-data.net/doc/ndn-cxx/current/specs/certificate-
operator = Operator/<opld> format.html)
rtr = Router/<rtrName> # This info is validated by the key's signature, not the schema
packet names netCert = <net>/<_KEY>
siteCert = <net>/<site>/<_KEY>
(format from nlsr/src/hello_protocol.cpp) opCert = <net>/<site>/<operator>/<_KEY>
3rd parameter is <net>/<site>/<rtr> prefix but stuck into one rtrCert = <net>/<site>/<rtr>/<_KEY>
component so it can't be validated. nlsrCert = <net>/<site>/<rtr>/nlsr/<_KEY>

 Fifteen lines of code, fifteen lines of comments
* Not unlike the rule specifications

©Pollere, Inc. www.pollere.net

http://www.pollere.net

omitted code to parse input line, set variables

try {
// make a CRshim with this target

CRshim s(target);
// builds and publishes command and waits for reply

s .doCommand (ptype, pargs, processReply);
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;

note the use of component names

vold processReply(const Reply& pub, CRshim& shim)
{
const auto& c = pub.getContent();
if (c.value_size() > 0) {
std::cout << std::string((const char*)(c.value()), c.value_size()) << "\n";

}

// Using the reply timestamps to print cli-to-nod & nod-to-cli times
std::cout << "Reply " << to_string(++nReply) << " timing (in sec.): "
<< "to NOD=" + to_string(pub.timeDelta("rTimestamp", "cTimestamp"))
<< " from NOD=" + to_string(pub.timeDelta("rTimestamp")) << std::endl}

if (--count > 0) {
// wait then launch another command
timer = shim.schedule(interval, [&shim]() {
shim.issueCmd(ptype, pargs, processReply);
)i
return;
}
if (target == "all") {
// wait for more replies
timer = shim.schedule(interval, []() { doFinish(); });
return;

}
doFinish();

doFinish() for this client just exits

Use of shim
and schemer
simplified
DNMP Client

See.

github.com/pollere/DNMP

http://github.com/pollere/DNMP

Status / Summary

Started with NDN’s roots: multicast and security

These critical features need(ed) work
trust schema: usability and audits
set synchronization communication models
multicast strategy on mulitcast networks (not replicated unicast)
performance and behavior on wire (or over air)

Co-development of DNMP and bespoke transport
« NFD patches (more to come)
VerSec toolkit takes trust schema design to useful code

“bespoke transport” model of collection of functional modules that
handle: Data transport, security validation, application class specificity

Co-development and edge network starting point critical

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Opinions
« Despite the prevalence of the hourglass in NDN papers,
the “narrow neck” has not been respected

things added to the NDN protocol layer
no rich library of application-focused set synchronization transports

- NDN is unlikely to replace the Internet anytime soon, if
ever, but offers a lot of promise for “edge” applications.
The edge is radio but not much work on testing or optimizing this
Data muling is a powerful feature, not in NFDv0.6.6-20-g07f2e2f

Walk first. Performance test with applications. Can’t rely on simulator

- NDN offers the opportunity to get security right. Its
architecture allows fine-grained role-based security
tools to make use of this are lacking
lack methods of securing the trust rules - make the schema signable

use the schema at run-time (schemer.hpp) to access Name components
so that changes in Names don’t require changes in application code

©Pollere, Inc. www.pollere.net

http://www.pollere.net

Example
VerSec
compiler
output

dnmp/nod/local/command/operator/<opID>/<_c_MachineID>/probe/
<_pID>/<_pArgs>/

dnmp/nod/<_nodID>/command/operator/<opID>/<_c_MachineID>/probe/
<_pID>/<_pArgs>/

<_c_TimeStamp> }
roleCert = {

/myhouse/dnmp/operator/<opID>/KEY/_/_/_/_}

}
netCert = {

/myhouse/KEY/ / /_/_}

<opID>/<_c_MachineID>/probe/<_pID>/<_pArgs>/

<_c_TimeStamp>/nod/<nodID>/<_r_TimeStamp> }
nodCert = {

/myhouse/dnmp/nod/<nodID>/KEY/_/_/_/_}

30

netCert = { /myhouse/KEY/_/_/_/_

13 unique literals (66 bytes):
KEY(8) all(2) command(4) config(l) device(l)
dnmp(12) local(4)
user(3)
5 unique refs (23 bytes):
confID(1) devID(1l) nodID(5) opID(7) uID(3)
6 unique params (46 bytes):
c_MachineID(8) c_TimeStamp(8) nodID(2) pArgs(8)
pID(8) r_TimeStamp(4)
reference map:
uID: cmd[6](1l) roleCert[3](1l)
opID: cmd[6](2,3,4) roleCert[3](2)
nodID: nodCert[3] reply[13](1,2,3,4)
devID: deviceCert[2]
confID: configCert[2]
validation chains:
uID in cmd[6](1) validated by roleCert[3](1)
opID in cmd[6](2,3,4) validated by roleCert[3](2)
nodID in reply[13](1,2,3,4) validated by
nodCert[3]

