
©Pollere, Inc. www.pollere.net

The Controlled Delay (CoDel)
AQM Approach to fighting

bufferbloat

BITAG TWG
Boulder, CO

February 27, 2013

Kathleen Nichols
Van Jacobson

http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Background

• The “persistently full buffer” problem, now called
bufferbloat, has been around for 30 years

• The solution, active queue management (AQM), has been
known for more than 20 years
• Unfortunately, the AQMs invented so far only “kind of” work
• It’s much easier to control long-lived TCPs than mixes
• A lot of AQMs accept large queue delays
• Most have many settings and are complex
• Dynamic link bandwidths are common today

• Using average queue length as a congestion indicator is a
big part of the problem

2

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net 3

Sender Receiver

Time

Q
ue

ue
 le

ng
th

A TCP with a 25 packet window into a connection with an
intrinsic pipe size of 20 packets:

After the initial burst of packets, settles into a 5 (+/-1) packet standing queue.
The average queue size is the window mismatch to the pipe size, unrelated
to the sending rate:

good queue

bad queue

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Tracking Bad Queue

4

• Good queue goes
away in an RTT, bad
queue hangs
around.

➡ queue length min()
during a sliding
window interval
measures bad
queue ...

➡ ... as long as
window is at least
an RTT wide.

Time

Q
ue

ue
 le

ng
th

Interval

Van made this observation in 2006 (see
talk at MIT Lincoln Labs)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

How low should we go?

• As we reduce that “standing queue” of slide 3, don’t want
to risk forcing the link to go idle.

• Need to leave an MTU of backlog (i.e., don’t drop if there’s
less than an MTU sitting in the buffer).

• A larger backlog can result in higher utilization, particularly
where there are a small number (1 to 3) of bulk transfers,
but at a cost of higher delay.

• To identify an appropriate range for the backlog, we turn to
analysis to find a bandwidth-independent value for this
backlog, which we call the target

5

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net 6

0 20 40 60 80 100

75
80

85
90

95
10

0

Utilization vs. Target for a single Reno TCP

Target (% of RTT)

Bo
ttl

en
ec

k
Li

nk
 U

til
iz

at
io

n
(%

 o
f m

ax
)

Tolerating some standing queue results in a higher utilization but it reaches 90%
with a target that is about 30% of the RTT

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net 7

This suggests exploring targets
in the range from 1 to 15 ms.

Cubic gets better utilizations.

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Controlled Delay (CoDel) AQM
Goals

• no knobs - parameterless

• separate good queue and bad queue - keep median
delays (over time) low while permitting bursts

• insensitive (or nearly so) to RTT, link rates, traffic loads

• adapt to dynamically changing link rates with no negative
impact on utilization

• simple and efficient implementation

8

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

CoDel Innovations
1. Use the local minimum of queue as the observed statistic

2. The information needed about the local minimum (how
long queue has been below/above target) can be kept in a
single state variable, no need to keep a sliding window of
the actual values

3. Use the packet sojourn time in the queue (the actual
packet delay) rather than queue size in bytes or packets
as the value observed

Use of minimum means all the work can be done at queue
departure time and no locks are needed (the minimum can
only change on departure)

9

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

CoDel in a nutshell
• CoDel assumes that a standing queue of target is acceptable (as determined by the

local minimum) and that it is unacceptable to drop when there are fewer than an
MTU worth of bytes in the buffer

• To ensure that the minimum value is not stale, it has to have been experienced in
the most recent interval (sliding window)

• When the sojourn time has exceeded target for at least an interval, a packet is
dropped and a control law used to set the next drop time

• The next drop time is decreased in inverse proportion of the square root of the
number of drops since the dropping state was entered (to get a linear change in
throughput)

• When the sojourn time goes below target the controller stops dropping.
• Prevented from re-entering dropping state too soon after exiting it and resumes the

dropping state at a recent control level if one exists

Target and interval are constants: acceptable queue delay and a time on the order of
a worst case RTT of connections through the bottleneck. Experimented with target
from 1 to 20ms, but 5ms and interval of 100ms works well for range of RTTs from
10ms to 1sec, with excellent performance in 10ms - 300ms range.

10

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Results

11

• from the original work last year

• all CoDel runs use exactly the same
algorithm

• RED runs each use the link bandwidth to
set parameters

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Results: Range of static link rates (high)

Various loads (FTP, web-browsing, CBR), RTTs from 10ms-500ms sorted by link rate

12

0

0.005

0.010

0.015

0.020

3 10 45 100

CoDel Median Pkt Delay (sec) by Bandwidth (Mbps)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 10 45 100

CoDel Link Utilization by Link Bandwidth (Mbps)

0

0.005

0.010

0.015

0.020

3 10 45 100

RED Median Pkt Delay (sec) by Bandwidth (Mbps)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 10 45 100

REDLink Utilization by Link Bandwidth (Mbps)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Results: Range of static link rates (low)

Data for both 500 byte MTU and 1500 byte MTU: the larger MTU increases delays
but effect diminishes as bandwidth moved toward 1.5 Mbps. CBRs use 100 byte
packets. (The low bandwidths don’t work with RED.)

13

blue: 500B MTU
green: 1500B MTU

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.128 0.256 0.512 1.5

Median Packet Delays by Bandwidth

Web-only Traffic

0.4

0.6

0.8

1.0

0.9

1.0

0.128 0.256 0.512 1.5

Link Utilization by Link Bandwidth (in Mbps)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Dynamic Link: the fun stuff

• Nominal 100 Mbps link with
rate changes, buffer size of
830 packets

• 4 FTPs, 5 packmime
connections/sec

• Note the throughput line for
undersized buffer of 10
packets: throughput is about
75% less. CoDel same
throughput as tail drop but
2.7ms median delay, 5ms
75th percentile

• Experimentally duplicated by
Stanford grad students: http://
reproducingnetworkresearch.wordpress.
com/2012/06/06/solving-bufferbloat-
the-codel-way/

14

100 Mbps 10Mbps 1Mbps 50Mbps 1Mbps

100Mbps

CoDel (black)
RED (red)
Tail drop (blue)

0

2

10

0 50 100 150 200 250 300

Per-Packet Queue Delay for Dynamic Bandwidth

100 Mbps 10Mbps 1Mbps 50Mbps 1Mbps

100Mbps

0

0.5

1.0

0 50 100 150 200 250 300

Detail of Per-Packet Queue Delay vs. Simulation Time (sec)

blue: Tail drop
black: CoDel
red: RED

10 pckt buffers

0

5

10

15×105

0 50 100 150 200 250 300

Cumulative Kbytes transferred vs simulation time (sec)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Consumer Edge type example
• Symmetric links
• Load of two-way 64Kbps CBR, infinite FTP download, web browsing at a rate of 2

connections per second, uploads of small FTPs (1MB with 5-15 second idle
periods)

• Compared two rates, CoDel and Tail drop
• CoDel never drops packets at a higher rate (usually less) than Tail drop
• CoDel keeps a much smaller queue and transfers similar amounts of data

15

metric

512 Kbps Links512 Kbps Links512 Kbps Links512 Kbps Links512 Kbps Links512 Kbps Links 1.5 Mbps Links1.5 Mbps Links1.5 Mbps Links1.5 Mbps Links1.5 Mbps Links1.5 Mbps Links

metric downloaddownloaddownload uploaduploadupload downloaddownloaddownload uploaduploaduploadmetric

C T C/T C T C/T C T C/T C T C/T

pkt drop % 8 8 100% 1.5 5.8 25% 3.5 4.7 75% 1.4 2.5 56%

median delay (ms) 18 73 25% 9 37 25% 8 49 17% 0 0 100%

total Mbytes 17 18 95% 12.8 13.9 92% 37 40 92% 22 21 103%

fairness of drops 0.87 0.89 98% 0.93 0.89 104% 0.81 0.96 84% 0.6 0.71 85%

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Results: Range of RTTs

16

CoDel Median Delays (sec)

CoDel 95th Percentile Delay (sec)

0

0.01

0.02

0

0.02

0.04

0.06

10 30 50 100 150 200 500

CoDel Median Link Utilizations

0.5

0.6

0.7

0.8

0.9

1.0

10 30 50 100 150 200 500

RED Median Link Utilizations

0.5

0.6

0.7

0.8

0.9

1.0

10 30 50 100 150 200 500

RED 95th Percentile Delay (sec)

RED Median Delays (sec)

0

0.01

0.02

0

0.02

0.04

0.06

10 30 50 100 150 200 500

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Interesting “Fairness” Results

17

0

0.2

0.4

0.6

0.8

1.0

10 30 50 100 150 200 500

RTT in milliseconds

CoDel isn’t really concerned with “fair shares” of the bottleneck bandwidth but we did
want to see if the drops were distributed in proportion to the usage of the link. Used
the Jain Fairness Index, where 1.0 is best:

(
P

i xi)2

n · (
P

i x

2
i)

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Issues

18

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

CoDel Can’t Fix Concatenated
Queues

Solutions:
• rate control
• AQM in CM
• Flow control

19

CM buffer
Cable Modem

CPE Router

Ethernet
(100 Mbps-1Gbps)

upstream
(2Mbps-?)Scheduler

user
pkts

Monitor buffer to determine
when there are sufficient

packets for efficient operation
Signal router to stop

sending packetsBuffers are managed to appropriate
size and the most critical packets can
be selected at sending opportunities

CM buffer
Cable Modem

CPE Router

Ethernet
(100 Mbps-1Gbps)

upstream
(2Mbps-?)Scheduler

Rate mismatch will
cause CM buffer to fill
(bufferbloat) and may

cause priority inversion

user
pkts

When uplink is heavily utilized
the router buffers will fill

Flow control

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Traffic-Related Issues
• When “forward” tcp data streams are mixed with “reverse”

acks, this has always created problems.
• When long-lived file transfers are mixed with bursty web

request streams or VoIP, the latter suffer
• Though running CoDel will help the second problem some

due to keeping shorter delays, the real solution lies beyond
using an AQM

• The best solution for VoIP is a prioritized queue
• The best solution for creating a better traffic mixing and

solving ack compression problems is to run a stochastic
flow queue algorithm across a moderate number of bins
and then run CoDel on each bin (Dumzaet)

20

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Algorithm Issues

• A more sophisticated Control Law that can recognize a
steady state (various “hacks” to mitigate problems)

• Although good results across a range of RTTs have come
with a fixed minimum-tracking interval of 100-200ms,
making the algorithm more robust to RTT is desireable

• An analytic and experimental study of the optimal number
of bins for an sfq is needed

21

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Educational Issues

• The meaning of target and interval
• “bursty macs” don’t require larger targets (I wrote a note on

this and posted on web site)
• use packet traces to figure out what is really going on
• knowledge is power

22

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net

Pollere, INC.
network

analysis &

architecture,

performance

©Pollere, Inc. www.pollere.net

Notes, Caveats

• The “second order” parts of CoDel are still being explored.
• We want to keep this algorithm available to anyone and

not encumbered by patent stuff: un-encumbered code
(BSD/GPL dual-license) available for ns2, ns3, linux

• We have submitted this as in internet draft to the IETF TSV
WG and recently updated (draft-nichols-tsv-codel-01)

• We have put our simulator code and other goodies,
including links to Van’s talk at www.pollere.net/CoDel.html

• CoDel is in Linux kernels from 3.5 on.
• There is a lot of active experimentation in linux which is

tracked by Dave Taht at http://www.bufferbloat.net/projects/
codel

23

http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net
http://www.pollere.net/CoDel.html
http://www.pollere.net/CoDel.html
http://www.bufferbloat.net/projects/codel
http://www.bufferbloat.net/projects/codel
http://www.bufferbloat.net/projects/codel
http://www.bufferbloat.net/projects/codel

