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Background

• The “persistently full buffer” problem, now called 
bufferbloat, has been around for 30 years

• The solution, active queue management (AQM), has been 
known for more than 20 years
• Unfortunately, the AQMs invented so far only “kind of” work
• It’s much easier to control long-lived TCPs than mixes
• A lot of AQMs accept large queue delays
• Most have many settings and are complex
• Dynamic link bandwidths are common today

• Using average queue length as a congestion indicator is a 
big part of the problem
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A TCP with a 25 packet window into a connection with an 
intrinsic pipe size of 20 packets:

After the initial burst of packets, settles into a 5 (+/-1) packet standing queue. 
The average queue size is the window mismatch to the pipe size, unrelated 
to the sending rate:

good queue

bad queue
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Tracking Bad Queue
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• Good queue goes 
away in an RTT, bad 
queue hangs 
around.

➡ queue length min() 
during a sliding 
window  interval 
measures bad 
queue ...

➡ ... as long as 
window is at least 
an RTT wide.
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Van made this observation in 2006 (see 
talk at MIT Lincoln Labs)
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How low should we go?

• As we reduce that “standing queue” of slide 3, don’t want 
to risk forcing the link to go idle.

• Need to leave an MTU of backlog  (i.e., don’t drop if there’s 
less than an MTU sitting in the buffer).

• A larger backlog can result in higher utilization, particularly 
where there are a small number (1 to 3) of bulk transfers, 
but at a cost of higher delay.

• To identify an appropriate range for the backlog, we turn to 
analysis to find a bandwidth-independent value for this 
backlog, which we call the target
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Tolerating some standing queue results in a higher utilization but it reaches 90%
with a target that is about 30% of the RTT
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This suggests exploring targets
in the range from 1 to 15 ms.

Cubic gets better utilizations.
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Controlled Delay (CoDel) AQM 
Goals

• no knobs - parameterless

• separate good queue and bad queue - keep median 
delays (over time) low while permitting bursts

• insensitive (or nearly so) to RTT, link rates, traffic loads

• adapt to dynamically changing link rates with no negative 
impact on utilization

• simple and efficient implementation
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CoDel Innovations
1. Use the local minimum of queue as the observed statistic

2. The information needed about the local minimum (how 
long queue has been below/above target) can be kept in a 
single state variable, no need to keep a sliding window of 
the actual values

3. Use the packet sojourn time in the queue (the actual 
packet delay) rather than queue size in bytes or packets 
as the value observed

Use of minimum means all the work can be done at queue 
departure time and no locks are needed (the minimum can 
only change on departure)
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CoDel in a nutshell
• CoDel assumes that a standing queue of target is acceptable (as determined by the 

local minimum) and that it is unacceptable to drop when there are fewer than an 
MTU worth of bytes in the buffer

• To ensure that the minimum value is not stale, it has to have been experienced in 
the most recent interval (sliding window)

• When the sojourn time has exceeded target for at least an interval, a packet is 
dropped and a control law used to set the next drop time

• The next drop time is decreased in inverse proportion of the square root of the 
number of drops since the dropping state was entered (to get a linear change in 
throughput)

• When the sojourn time goes below target the controller stops dropping. 
• Prevented from re-entering dropping state too soon after exiting it and resumes the 

dropping state at a recent control level if one exists

Target and interval are constants: acceptable queue delay and a time on the order of 
a worst case RTT of connections through the bottleneck. Experimented with target 
from 1 to 20ms, but 5ms and interval of 100ms works well for range of RTTs from 
10ms to 1sec, with excellent performance in 10ms - 300ms range.
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Results
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• from the original work last year

• all CoDel runs use exactly the same 
algorithm 

• RED runs each use the link bandwidth to 
set parameters
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Results: Range of static link rates (high)

Various loads (FTP, web-browsing, CBR), RTTs from 10ms-500ms sorted by link rate
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Results: Range of static link rates (low)

Data for both 500 byte MTU and 1500 byte MTU: the larger MTU increases delays 
but effect diminishes as bandwidth moved toward 1.5 Mbps. CBRs use 100 byte 
packets. (The low bandwidths don’t work with RED.)
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blue: 500B MTU
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Dynamic Link: the fun stuff

• Nominal 100 Mbps link with 
rate changes, buffer size of 
830 packets

• 4 FTPs, 5 packmime 
connections/sec

• Note the throughput line for 
undersized buffer of 10 
packets: throughput is about 
75% less. CoDel same 
throughput as tail drop but 
2.7ms median delay, 5ms 
75th percentile

• Experimentally duplicated by 
Stanford grad students: http://
reproducingnetworkresearch.wordpress.
com/2012/06/06/solving-bufferbloat-
the-codel-way/
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Consumer Edge type example
• Symmetric links
• Load of two-way 64Kbps CBR, infinite FTP download, web browsing at a rate of 2 

connections per second, uploads of small FTPs (1MB with 5-15 second idle 
periods)

• Compared two rates, CoDel and Tail drop
• CoDel never drops packets at a higher rate (usually less) than Tail drop 
• CoDel keeps a much smaller queue and transfers similar amounts of data
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Results: Range of RTTs
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Interesting “Fairness” Results
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Issues
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CoDel Can’t Fix Concatenated 
Queues

Solutions:
• rate control
• AQM in CM
• Flow control
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Traffic-Related Issues
• When “forward” tcp data streams are mixed with “reverse” 

acks, this has always created problems.
• When long-lived file transfers are mixed with bursty web 

request streams or VoIP, the latter suffer
• Though running CoDel will help the second problem some 

due to keeping shorter delays, the real solution lies beyond 
using an AQM

• The best solution for VoIP is a prioritized queue
• The best solution for creating a better traffic mixing and 

solving ack compression problems is to run a stochastic 
flow queue algorithm across a moderate number of bins 
and then run CoDel on each bin (Dumzaet)
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Algorithm Issues

• A more sophisticated Control Law that can recognize a 
steady state (various “hacks” to mitigate problems)

• Although good results across a range of RTTs have come 
with a fixed minimum-tracking interval of 100-200ms, 
making the algorithm more robust to RTT is desireable

• An analytic and experimental study of the optimal number 
of bins for an sfq is needed
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Educational Issues

• The meaning of target and interval
• “bursty macs” don’t require larger targets (I wrote a note on 

this and posted on web site)
• use packet traces to figure out what is really going on
• knowledge is power
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Notes, Caveats

• The “second order” parts of CoDel are still being explored.
• We want to keep this algorithm available to anyone and 

not encumbered by patent stuff: un-encumbered code 
(BSD/GPL dual-license) available for ns2, ns3, linux

• We have submitted this as in internet draft to the IETF TSV 
WG and recently updated (draft-nichols-tsv-codel-01)

• We have put our simulator code and other goodies, 
including links to Van’s talk at www.pollere.net/CoDel.html

• CoDel is in Linux kernels from 3.5 on.
• There is a lot of active experimentation in linux which is 

tracked by Dave Taht at http://www.bufferbloat.net/projects/
codel
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