
Pollere, Inc. www.pollere.net

Trust schemas and ICN:
key to secure Home IoT

Kathleen Nichols
September 24, 2021

ACM Information-Centric Networking ‘21

Pollere, INC.
network

analysis &

architecture,

performance

http://www.pollere.net

Trust schemas express rules for who gets to say
what to which

– Identities are conferred through signing certificates with
complete signing chains to give the who

– Strictly defined Data name structures linked to
components of an identity’s signing chain constrain what
can be communicated

– Rules that link valid Data format to legal signers let
recipients decide which communications to accept

2

For a particular domain where the rules and certificates apply

Employ trust schemas like building plans that can be used as
specifications to check for code compliance, to build, and for an
inspector to validate compliance

This requires tools and methodology

3

plans

text file

diagnostics binary trust
schema

soundness

declarative schema
specification language

schemaCompile

messages

publications

NDN Interests/Data

syncps

(syncInterests/syncData)

shim (API)

schemaLib

sigmgrs &
distributors

build &
validate

trust schema
enabled

transport

Evolving tools, documentation, examples at https://github.com/pollere/DCT

home IoT makes an attractive use case

• well-specified communications for entities
• single administrative authority (single root of trust)

4

"attributes": {
 "colorTemperature": {
 "schema": {
 "type": "object",
 "properties": {
 "value": {
 "type": "integer",
 "minimum": 1,
 "maximum": 30000 },},
 "additionalProperties": false
 },
 "required": [
 “value"] } }

"commands": {
 "setColorTemperature": {
 "arguments": [
 {
 "name": "temperature",
 "optional": false,
 "schema": {
 "type": "integer",
 "minimum": 1,
 "maximum": 30000
 }}]}}

e.g., SmartThings capabilities represent the functions of devices, with commands
to control device functions and attributes that represent the state or properties of
a device (smartthings.com)
commands and attributes define what a home IoT network will communicate and
are defined in JSON schema, for example:

http://smartthings.com

application communications determine publication names

5

– components that are completely determined by the trust schema from
available certificates derive content from a component in a cert in the signing
chain, e.g., capability. These have a leading “_”.

– components can specify a function that the builder calls at build-time, e.g.,
origin can be filled with sysId() call. These have a leading “_”.

– components that are supplied (from app through shim) at the time the pub is
built, e.g., topic, do not have a leading “_”

non-bold components specified by DCT/mbps conventions (see paper, GitHub)

netID/capability/topic/loc/args/origin/msgID/sCnt/mts

device functions e.g., switch, light, lock

message type e.g., command, attribute, event distinguishes which capability and topic, can indicate a room
or floor of a building, a particular device or class of devices,

a network, or local to keep publications off network

any additional information required for this topic

write dctIoT.trust rules in terms of pubs and identities

6

_net: "houseNet"
// Publication definition
#Report: _net/_cap/topic/_devId/args/_origin/mID/sCnt/mts & {_origin: sysId()}
switchCert: capabilityCert & {_cap: "switch"}
lightCert: capabilityCert & {_cap: "light"}
lsState: #Report & { topic: "attribute", args: "on"|"off" } <= switchCert | lightCert
lightEvent: #Report & { topic: "event", args: "on2off"|"off2on" } <= lightCert
// For a paired by _devTag (e.g., "sink") switch and light
#tagCommand: _net/cap/topic/_devTag/args/_origin/mID/sCnt/mts & {
 topic: "command", _origin: sysId() }
lightTagCmd: #tagCommand & { cap: "light", args: "on"|"off" } <= switchCert
// A programatic command can go to any 'loc'
#prgCommand: _net/cap/topic/loc/args/_origin/mID/sCnt/mts & {
 topic: "command", _origin: sysId() }
lightOwnCmd: #prgCommand & { cap: “light”, args: "on"|"off"|"report"} <= ownerCert
capabilityCert: _net/_devTag/_cap/_keyinfo <= deviceCert
deviceCert: _net/_devType/_devId/_keyinfo <= configCert
ownerCert: roleCert & { _role: "owner" }
roleCert: _net/_role/_roleId/_keyinfo <= netCert
configCert: _net/"config"/confId/_keyinfo <= netCert
netCert: _net/_keyinfo
// publication prefix and validator type
#pubPrefix: _net
#pubValidator: “EdDSA"
// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"
// components are KEY, keyID, issuerID, and version
keyinfo: “KEY”//"dct"/_

7

schemaCompile
output for
dctIoT.trust

Publication #Report:
 parameters: topic args mID sCnt mts
 tags: /_net/_cap/topic/_devId/args/_origin/mID/sCnt/mts
 signing chains:
 chain 0: lsState <= switchCert <= deviceCert <= configCert <= netCert
 lsState[1]==switchCert[2] lsState[3]==deviceCert[2]
 chain 1: lsState <= lightCert <= deviceCert <= configCert <= netCert
 lsState[1]==lightCert[2] lsState[3]==deviceCert[2]
 chain 2: lightEvent <= lightCert <= deviceCert <= configCert <= netCert
 lightEvent[1]==lightCert[2] lightEvent[3]==deviceCert[2]
 templates:
 /"houseNet"/_cap/"attribute"/_devId/args/sysId()/mID/sCnt/mts { switchCert lightCert }
 [args: on | o!]
 /"houseNet"/_cap/"event"/_devId/args/sysId()/mID/sCnt/mts { lightCert }
 [args: on2o! | o!2on]

…
Certificate templates:
 cert ownerCert: /"houseNet"/"owner"/_roleId/"KEY"/_/"dct"/_
 cert lightCert: /"houseNet"/_devTag/"light"/"KEY"/_/"dct"/_
 cert switchCert: /"houseNet"/_devTag/"switch"/"KEY"/_/"dct"/_
 cert deviceCert: /"houseNet"/_devType/_devId/"KEY"/_/"dct"/_
 cert configCert: /"houseNet"/"config"/confId/"KEY"/_/"dct"/_
 cert netCert: /"houseNet"/"KEY"/_/"dct"/_

40 strings, 258 bytes (4 overlaps, 247 bytes in stab)
binary schema is 601 bytes

Parameter values required
to build this publication

Signing chains required
for each pub use case

 This template can be signed by chain 0 or 1

Pub builder puts origin’s system Id here

NDN cert conventions require these
components but the schema doesn’t
supply tag names to reference them

Legal “args” values for this template item

Leading “_” in name
means must have the same value in pub & certs

Tag names used to reference
components of pub. E.g.,
“if (pub["args"] == "on") …

next, use trust schema to create a trust zone

– the trust schema specifies the format of communications and signing
certificates with signing chains that terminate in the same trust anchor

– entities that use the same trust schema and have associated legal signing
certificates form a trust zone that remains secure without the need for
physical network isolation

– DCT provides some utilities to help with this:

– The alice bundle has three certificates and includes her private signing key

– Now alice can join the trust zone!

8

make a local trust anchor:
schemaCompile -o dcIoT.scm dctIoT.trust
make_cert -s EdDSA -o house.root houseNet

schema_cert -o dctIoT.schema dctIoT.scm house.root
make_cert -s EdDSA -o alice.cert houseNet/owner/alice house.root
make_bundle -o alice.bundle house.root dctIoT.schema +alice.cert

make a binary trust schema:
make a trust schema cert:

make a role cert:
make an identity bundle:

%app alice.bundlestart app from command line:

alice’s app connects to the trust zone
– app pubs will handled through a syncps collection houseNet/pubs
– but first a related collection, houseNet/certs, is used by a signing certificate

distributor to make sure the other apps have all the certs in this app’s signing
chain and it has theirs

– if the schema requires content privacy (AEAD symmetric encryption),
collection houseNet/key is used by a group key distributor to elect a key
maker then distribute the ephemeral shared secret key to all holders of a
valid signing cert (new entities are added as their signing cert is published)

9

signing cert distributor

1. joins houseNet/certs
2. publishes alice’s signing cert chain
3. validates any received signing chains
using trust schema and trust anchor (on-
going)

group key distributor
1. joins houseNet/key
2. if no data there, creates a group key, encrypts
 with public key of each signing cert received,
 and publishes the list
 else find my copy of group key in the data
 and decrypt

on successful
publication

have group key

indicate to app:
connected to zone

of note

- alice has no a priori knowledge of other entities in the the trust
zone nor they of her

- application has no interaction with the certificate and key
distribution; these are invoked by schemaLib methods based
on the sigmgrs selected

- if AEAD is specified, a syncData packet in the pub collection is
discarded if it isn’t AEAD signed with a known key

- if EdDSA is specified
- for “wire”, a syncData packet in the pub is discarded if it isn’t

EdDSA signed by a known signer
- for pub, the publication is discarded if it isn’t EdDSA signed by a

known signer (cryptographic validation) or if the signer’s chain
isn’t consistent with the publication’s name according to the
schema (“structural” validation)

10

Further work

– more expressive versec/schemaCompile (struct components)
– more efficient broadcast communications “on wire”
– modules to distribute trust zone geographically
– “hierarchical” and connected trust zones

– easy to add sigmgrs for security research
– improved group key distributor
– provisioning and on-line updates for trust schemas, signing

certs
– shims for other communications models
– tools to go from rules to versec
– tools to go from application communications to versec

11

Opportunities

