
Versec/DCT to create and use trust schemas

ACM ICN 2021 Tutorial

Kathleen Nichols, Pollere

Outline

• overview of use of versec language and trust schema enabled application transports to yield trust zones
(tools, libraries, examples at https://github.com/pollere/DCT, location for Data-Centric Toolkit)

• developing an example trust schema (“office”)

• schemaCompile to check consistency, correctness of trust schema

• identity bundles: how to create and use, configuration needs

• distributors enable trust zones

• how to run example

• future work

What do we gain from this approach?

https://github.com/pollere/DCT

security rules and certificate specifications are turned into a trust schema which is bundled with a trust anchor and a unique
signing chain identity which an application’s DCT-based transport uses to join a trust zone (in green)

1. alice takes her device (configured with an
identity bundle) to a wifi cafe

2. the DCT-based app will automatically
present alice’s credentials and learn about all
the members of the trust zone

- outsiders can’t get their messages past

initial validation of packets

- If privacy is enabled, outsiders can’t snoop

pubs

- public cert chains are not encrypted

- symmetric keys are encrypted using public

key of validated trust zone members

trust schema-based transport enables trust zones

herb

alice

voldemort

emily

bob

cruella

free wifi

dctapp/pubs
dctapp/key

dctapp/cert

“curses!”

“curses!”

DCT app
DCT app

DCT app

DCT app

An identity bundle has three parts:

1. root of trust or trust anchor for this zone:

a self-signed certificate

2. trust schema for this zone: in certificate

form, signed by (a chain that ends at) the
trust anchor

3. unique signing identity: a private key/
private cert pair and its signing chain that:

a. terminates at the trust anchor

b. conforms to the trust schema rules

particular identity bundles are used to join particular trust zones

Multiple trust zones can co-exist independently, e.g. green and black

A device can only join both if:

- has an identity bundle for each

- has a different application or a different instance of the same application for each identity bundle

A user with identities in both can share data that has reached the app level so be careful when configuring identities!

Federated sharing architectures between trust zones for future

herb

snape

voldemort

emily

bob

cruella

free wifi

dctapp/pubs

dctapp/key

dctapp/cert

DCT app2

DCT app
DCT
app

DCT app DCT app

dctapp2/pubs

dctapp2/key

dctapp2/cert

DCT app2

alice

DCT app

DCT
app2

office example

A small office has:

• four people who use phone apps for access: Bob, Alice,

Herb, and Emily. Alice is a manager.

• six rooms: four offices, a conference room, and a hall

• a room controller (raspPi-like) in each room that controls
door lockset, light, temperature, screen and in hall
controls light and door lockset

Rules

• an employee controls all the functions in their assigned

office

• a manager can also control the conference room and hall

• a guard can control all door locks, lights, and temperature
settings as a group (and not individually)

• a room controller publishes the status of its functions
after it executes each command

Room 1 Room 3

Room 2 Room 4

Conference
RoomHall

Bob Alice HerbEmily

Frank

a guard

workers

Roles:

• employee, manager, guard, (room) controller

Room Controller functions:

• light, screen, temperature, door (lockset)

What needs to be communicated?

• command

• issuer must be employee/manager/guard

• commands to each function of: on/off, unlock/lock, out-of-office/heat/cool

• status

• must be a controller

• status of functions: on/off, locked/unlocked, out-of-office/heat/cool

• location

• which room

• whose phone

• “all”

elements of the rules for the office

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versec

room controller can control and publish status of a room

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

employee/manager can publish commands to their assigned room controller

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

manager can publish commands to conference room and hall controllers

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings (except for hall)

• screen: on/off (except for hall)

guard can publish commands to all room controllers (in unison only)

• door: lock/unlock

• light: on/off

• temp: out-of-office setting

rules written in english

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versec

room controller can control and publish status of a room

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

employee/manager can publish commands to their assigned room controller

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

manager can publish commands to conference room and hall controllers

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings (except for hall)

• screen: on/off (except for hall)

guard can publish commands to all room controllers (in unison only)

• door: lock/unlock

• light: on/off

• temp: out-of-office setting

rules written in english

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versec

room controller can control and publish status of a room

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

employee/manager can publish commands to their assigned room controller

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

manager can publish commands to conference room and hall controllers

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings (except for hall)

• screen: on/off (except for hall)

guard can publish commands to all room controllers (in unison only)

• door: lock/unlock

• light: on/off

• temp: out-of-office setting

rules written in english

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versec

room controller can control and publish status of a room

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

employee/manager can publish commands to their assigned room controller

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

manager can publish commands to conference room and hall controllers

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings (except for hall)

• screen: on/off (except for hall)

guard can publish commands to all room controllers (in unison only)

• door: lock/unlock

• light: on/off

• temp: out-of-office setting

rules written in english

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versec

room controller can control and publish status of a room

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

employee/manager can publish commands to their assigned room controller

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings

• screen: on/off

manager can publish commands to conference room and hall controllers

• door: lock/unlock

• light: on/off

• temp: heat, cool, out-of-office settings (except for hall)

• screen: on/off (except for hall)

guard can publish commands to all room controllers (in unison only)

• door: lock/unlock

• light: on/off

• temp: out-of-office setting

rules written in english

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versecpub and cert relationships

Note: the graphviz commands to construct this picture are the
first thing output when schemaCompile is given a ‘-d’ flag. Paste
them into a local graphviz tool or a browser-based tool like
Sketchviz to get this diagnostic for any schema.

https://sketchviz.com/new
https://graphviz.org/

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versecpub inheritance relationships

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versecsigning relationships

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

office.trust file of rules in versecsigning relationships

office.trust file of rules in versec

roles translate to cert chains

Use encryption of “on the wire” (syncData) packets preserves privacy

Exact details of the certificates and how they are combined is critical for well-founded

security; this is discussed in the conference paper “Trust Schemas and ICN: Key to

Secure Home IoT”

// trust anchor name for this trust zone
_net: "office"

// Publication definition.
// Use of mbps shim means publications have mId, sCnt, mts (set by mbps)

#pub: _net/func/topic/loc/args/mId/sCnt/mts

ctrlr: #pub & (
 { func: "light" | "screen", args: "on" | "off" } |
 { func: "door", args: "lock" | "unlock" } |
 { func: "temp", args: "ooo"| "heat" | "cool" })

status: ctrlr & { topic: "status", loc: _roomId } <= cntrlrCert

rmCmd: ctrlr & { topic: "command", loc: _roomId } <= empCert | mgrCert

mgrCmd: ctrlr & { topic: "command", loc: "confRm"|"hall" } <= mgrCert

grdCmd: #pub & { topic: "command", loc: "all" } & ({ func: "light", args: "on"|"off" } |
 { func: "lock", args: "lock"|"unlock" } | { func: "temp", args: "ooo" }) <= grdCert

roleCert: _net/_role/_roleId/_keyinfo
empCert: roleCert & { _role: "employee" } <= roomCert
mgrCert: roleCert & { _role: "manager" } <= roomCert
cntrlrCert: roleCert & { _role: "controller" } <= roomCert
grdCert: roleCert & { _role: "guard" } <= roomCert

roomCert: _net/"room"/_roomId/_keyinfo <= configCert
configCert: _net/"config"/_configId/_keyinfo <= netCert
netCert: _net/_keyinfo

// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"

// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

// The final components are KEY,keyID, issuerID and version
keyinfo: "KEY"//"dct"/_

certificates in signing chain need to set roles of guard, employee, manager, room
controller and the unique identifiers within those roles which will be conferred at
configuration (e.g., alice, room2, 42)

certificates in the role signing chains used to assign rooms by identifier
(e.g., room2, hall, all)

configurer certificate in the chain protects usage of trust root

single root of trust must be specified and all certs terminate at its (self-signed) cert

{
{

publications use EdDSA signing

- Compiler uses the rules to ensure constraints are consistent (i.e., no
contradictions)

- Compiler makes sure the publications produced by the constraints are
“grounded” i.e., every field can be filled in (literal string, component in
signing chain, parameter that must be filled in by application)

- Compiler constructs templates for the run-time builder/validator

- The signing rules must form a DAG with a single root of trust

DCT tools includes many utilities to look at the elements of the schema.
There is a lot of detail to look at for those who are interested

% bld_dump id/confRm.bundle
chain: 0, signing cert: /office/controller/confRm/KEY/?g?&/dct/??e5w?|
parameters: fe { func topic loc args mId sCnt mts }
 args (4): 20208000000 /office/temp/status/confRm/84/85/86/87
 args (4): 1 /office/light/status/confRm/off/85/86/87
 args (4): 1 /office/screen/status/confRm/on/85/86/87
 args (4): 1 /office/light/status/confRm/on/85/86/87
 args (4): 1 /office/door/status/confRm/lock/85/86/87
 args (4): 1 /office/door/status/confRm/unlock/85/86/87
 args (4): 1 /office/screen/status/confRm/off/85/86/87

% bld_dump id/bob.bundle
chain: 1, signing cert: /office/employee/bob/KEY/68?/dct/??e5~M?
parameters: fe { func topic loc args mId sCnt mts }
 args (4): 20208000000 /office/temp/command/room1/84/85/86/87
 args (4): 1 /office/light/command/room1/off/85/86/87
 args (4): 1 /office/screen/command/room1/on/85/86/87
 args (4): 1 /office/light/command/room1/on/85/86/87
 args (4): 1 /office/door/command/room1/lock/85/86/87
 args (4): 1 /office/door/command/room1/unlock/85/86/87
 args (4): 1 /office/screen/command/room1/off/85/86/87

builder dump – show all pubs some identity can produce

templates for pubs a confRm can publish

templates for pubs bob can publish

about schemaCompile

from trust rules to identity bundle

• Use versec declarative language to express trust rules in
readable fashion and a compiler to check the rules

• Application’s transport uses a verifiable compact version
of the trust schema to construct, sign, and validate
communications

• A trust schema and its trust root (in cert form) are
distributed with a signing identity, in an identity bundle,
used by the application to join a trust zone

• Signing identities consist of a private signing key with its
associated public cert and the entire signing chain of
public certs as specified by the trust schema, terminating
in the trust root. Only the signing key needs to be kept
private.

• This is sufficient to join the trust zone. DCT transport
handles finding, validating, and importing other certs

Using the bundle from the command-line:

%app alice.bundle

From rules to identity bundle:

write trust rules in versec language

text file

diagnostics ex.scm, compact binary trust schema

soundness

declarative schema
specification language

schemaCompile

make_cert -s EdDSA -o office.root office

schemaCompile -o office.scm office.trust

schema_cert -o office.schema office.scm office.root

make a root of trust (self-signed)

sign the trust schema

make_cert —s EdDSA -o alice.cert office/manager/alice office.root

make a signing identity (format must match trust schema rules)

make_bundle -o alice.bundle office.root office.schema +alice.cert
make an identity bundle

digression into what you “need to know” about DCT transport

• DCT’s trust schema enabled transport deals with
publications (NDN Data), building and validating them
according to the trust schema to give structural (fine-
grained) security with a sigmgr type specified to give
cryptographic security for that publication (i.e., signing)

• Sync protocol syncps manages collections of publications
(e.g., pub, cert, key) and passes new, valid pubs to its shim
if they match subscribed topics
- shim subscriptions can be made specific by including more

levels of the publication Name hierarchy

- syncps always has an outstanding Interest for its collection
which makes communications efficient

• Publications are packaged and unpackaged by syncps
into/from NDN Data “wire” packets which have a signature
manager type specified to give cryptographic security

• using the general-purpose mbps (message-based pub/
sub) library shim

• applications and mbps publish and subscribe by message
topics which are contained within the pub collection

• focus on the topics this application needs to
communicate; mbps takes care of the rest

messageSpace

entity 1
entity 2

entity n

topic b

topic a
topic c

publish(message, <topic>)
subscribe(callback, <topic>)

…

Application
messages

publications

NDN Interests/Data

syncps

(syncInterests/syncData)

tr
us

t s
ch

em
a-

ba
se

d
tr

an
sp

or
t

shim (API)

schemaLib

sigmgrs &
distributors

Data that fail to validate (illegal signature as per
trust schema) are discarded with no further

action

publications must validate
cryptographically and structurally

mpbs communications by topic

a syncps manages a collection
(groups of mbps topics)

distributors enable trust zone connection and data privacy

• connection and privacy happen automatically, based on the signature managers selected for publications and syncData

• distributors manage access to automatically created collections for certs and keys (while mbps manages application pubs through its syncps)

• applications supply a callback so they can be started once this process is complete

signing cert distributor

1. joins office/cert collection
2. publishes the alice signing cert chain
3. validates any received signing chains using
trust schema and trust anchor (on-going)

group key distributor

1. joins office/key collection
2. if no data there, create a group key, encrypt with public
 key of each signing cert received, and publish the list
 else find my copy of group key in the data and decrypt

on successful
publication and

Data privacy
selected

have group key

indicate to app: connected to zone
publication/reception can start

1. app creates a DCT transport which parses the trust schema: client(alice.bundle)
2. to join trust zone, app calls client.connect() which automatically starts:

on successful publication and
Data signed (not private) selected

in trust schema

Note that creating an identity-protected trust zone and data privacy does not require fine-grained trust rules (e.g.,
see DCT/examples/mbps/mbps0.trust)

notes on running the example

• github.com/pollere/DCT/examples/office will have office.trust, the
room and phone apps, mbps.hpp (soon to move to DCT/include/dct)
and a handy script to make some identity bundles (mkIDs.sh)

• unfortunately, you currently have to duplicate the NDN library and
forwarder versions that pollere uses but working on this

• you can try making changes to office.trust and running
schemaCompile without running the code, for example:

- add a status message from the employees for in-office and out-of-office

- add a guest role or presenter role that can control the screen in the
conference room

• for the adventurous, once the bundles are made, the applications
compiled, and an appropriate NFD is running, can run the
applications from command line with “%room <room>.bundle” or
“%phone <user>.bundle”. It always takes at least two members of a
trust zone before anything can happen. After that, new entities can
join anytime.

#include "mbps.hpp"

static std::string role{}; // this instance's role
static std::string id{};

static void statusPubr(mbps &cm, const std::string& f, const std::string& a) {
 msgTags tgs{};
 tgs.emplace_back("func", f);
 tgs.emplace_back("args", a);
 tgs.emplace_back("topic", "status");
 cm.publish(flds);
}

msgHndlr cmdRecv(mbps &cm, const mbpsMsg& msg, std::vector<uint8_t>&)
{
 std::string f = msg.tags["func"];
 std::string a = msg.tags["args"];
 print("{:%M:%S} {} in {} setting {} to {}\n",
 ticks(now.time_since_epoch()), role, id, f, a);
 statusPubr(cm, f, a);
}

int main(int argc, char* argv[])
{
 mbps cm(argv[argc-1]); //Create the mbps client
 role = cm.attribute("role");
 id = cm.attribute("roleId");
 // Connect and pass in the handler
 cm.connect(/* main task for this entity */
 [&cm]() {
 std::vector<std::string> acc;
 if(id == "hall") {
 acc = {"light", "door"};
 } else {
 acc = {"light", "door", "screen", "temp"};
 }
 for(auto i=0; i<acc.size(); i++) {
 cm.subscribe(acc[i] + "/command/" + id, cmdRecv);
 cm.subscribe(acc[i] + "/command/all", cmdRecv);
 }
);
 cm.run();
}

code for the room controller

http://github.com/pollere/DCT/examples/office

commissioning and updating

Using bundle on the command line is great for development, but not deployment

Network deployment brings other issues for good key hygiene that are noted in paper “Trust Schemas and ICN: Key to
Secure Home IoT”

Expect the actual app to be managed by a supervisor or similar process control program which creates short-lived (~hours)
signing key pairs to be signed by the installed signing key via TPM

Follow best current practices to commission (on-board) a device by provisioning the bundle file out-of-band (i.e., not over
open network)

- remove the secret key from the bundle and secure with TPM

- put the rest of the bundle file in a known location

Other over-the-air approaches possible (Tianyuan will discuss)

Data-centric approaches to updates could be developed
1.make key pair and short-lived cert
2.request TPM sign cert
3.add to bundle file to create id bundle
4.start dctApp with this id bundle
5.at cert expiration, repeat steps 1&2, pass cert to app

TPM

bundle
file

supervisor process

DCT application

cert distributor publishes new signing chain

start(id bundle) or pass new cert

commissioning

future

On our planned list

• additional features for versec language/compiler and schemaLib to make it easier to express publication variants,

to make use of multiple signing certs

• making mbps more general

• a DCT NDN Face for more efficient use of broadcast networks for syncps

• distribute trust zone via relay, etc

Other thoughts

• improved group key distributor

• other types of distributors (on-line updates?)

• updating signing keys and trust schema over network

• shims for other communication models

• other signature managers?

