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Sender Receiver
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Sender Receiver

• Queue forms at a bottleneck	


• There’s probably just one bottleneck 
(each flow sees exactly one)	


➡ Choices: can move the queue (by making a 
new bottleneck) or control it.
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Good Queue / Bad Queue

• Good queue goes 
away in an RTT, bad 
queue hangs around.	


➡ queue length min() 
over a sliding window 
measures bad queue ...	


➡ ... as long as window is 
at least an RTT wide.
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How big is the queue?

• Can measure size in bytes 
 – interesting if worried about overflow  
 – requires output bandwidth to compute  
    delay	


• Can measure packet’s sojourn time 
 – direct measure of delay  
 – easy (no enque/deque coupling so works 
    with any packet pipeline).
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Sojourn Time

• Works with time-varying output bandwidth 
(e.g., wireless and shared links)	


• Better behaved than queue length – no high 
frequency phase noise	


• Includes everything that affects packet so 
works for multi-queue links
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)Two views of a Queue

Top graph is sojourn time, 
bottom is queue size.

(one ftp + web traffic; 
10Mbps bottleneck; 

80ms RTT;  TCP Reno)
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Two views of a Queue

Top graph is sojourn time, 
bottom is queue size.

(one ftp + web traffic; 
10Mbps bottleneck; 

80ms RTT;  TCP Reno)
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Multi-Queue behavior

���13



a)Measure what you’ve got	


b)Decide what you want	


c)If (a) isn’t (b), move it toward (b)

Controlling Queue
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a)Measure what you’ve got	


b)Decide what you want	


c)If (a) isn’t (b), move it toward (b)

Controlling Queue

- Estimator	


- Setpoint	


- Control loop
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How much ‘bad’ queue 
do we want?

• Can’t let the link go idle (need one or two 
MTU of backlog)	


• More than this will give higher utilization at 
low degree of multiplexing (1-3 bulk xfers) 
at the cost of higher delay	


• Can the trade-off be quantified?
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• Setpoint target of 5% of nominal RTT (5ms 
for 100ms RTT) yields substantial utilization 
improvement for small added delay.
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• Setpoint target of 5% of nominal RTT (5ms 
for 100ms RTT) yields substantial utilization 
improvement for small added delay.

• Result holds independent of bandwidth and 
congestion control algorithm (tested with 
Reno, Cubic & Westwood).
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• Setpoint target of 5% of nominal RTT (5ms 
for 100ms RTT) yields substantial utilization 
improvement for small added delay.

• Result holds independent of bandwidth and 
congestion control algorithm (tested with 
Reno, Cubic & Westwood).

➡ CoDel has no free parameters:  running-
min window width determined by worst-
case expected RTT and target is a fixed 
fraction of same RTT.
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Algorithm & 
Control Law

(see I-D, CACM paper and Linux kernels >= 3.5)
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• provides isolation - protects low rate CBR 
and web for a better user experience. 
Makes IW10 concerns a non-issue.	


• gets rid of bottleneck bi-directional traffic 
problems (‘ack-compression’ burstiness)	


• improves flow mixing for better network 
performance (reduce HoL blocking)

Eric Dumazet has combined CoDel with a simple SFQ 
(256-1024 buckets with RR service discipline). Cost in 

state & cycles is small and improvement is big.

➡ Since we’re adding code, add fqcodel, not codel.
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• thanks to Jim Gettys and the ACM, have 
dead-tree publication to protect ideas	


• un-encumbered code (BSD/GPL dual-license) 
available for ns2, ns3 & linux	


• in both simulation and real deployment, 
CoDel does no harm – it either does nothing 
or reduces delay without affecting xput.

Where are we?
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What needs to be done
• Still looking at parts of the algorithm but 

changes likely to be 2nd order.	


• Would like to see CoDel on both ends of 
every home/small-office access link but:	


- We need to know more about how traffic 
behaves on particular bottlenecks (wi-fi, 
3G cellular, cable modem)	


- There are system issues with deployment
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Deployment Issues

RTR/AP Cable  
Modem HeadendHome 

Gateway
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Deployment Issues

RTR/AP Cable  
Modem HeadendHome 

Gateway

Protocol  
stack

Device 
Driver DeviceLinux 

kernel
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Deployment Issues

RTR/AP Cable  
Modem HeadendHome 

Gateway

Protocol  
stack

Device 
Driver DeviceLinux 

kernel

Phone 
CPU

3G  
Modem RAN SGSN?Cellphone
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Our thanks to:

• Jim Gettys	


• CoDel early experimenters, 
particularly Dave Taht	


• Eric Dumazet	


• ACM Queue	


• Eben Moglen
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