
CoDel
present by Van Jacobson to the	

IETF-84 Transport Area Open Meeting 
30 July 2012  

Vancouver, Canada

���2

���3

Sender Receiver

���4

Sender Receiver

���5

Sender Receiver

• Queue forms at a bottleneck	

• There’s probably just one bottleneck 
(each flow sees exactly one)	

➡ Choices: can move the queue (by making a
new bottleneck) or control it.

���5

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

���6

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

���6

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.	

➡ queue length min()
over a sliding window
measures bad queue ...	

➡ ... as long as window is
at least an RTT wide.

���7

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.	

➡ tracking min() in a
sliding window gives
bad queue ...	

➡ ... as long as window is
at least an RTT wide.

���8

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.	

➡ tracking min() in a
sliding window gives
bad queue ...	

➡ ... as long as window is
at least an RTT wide.

���8

How big is the queue?

• Can measure size in bytes 
 – interesting if worried about overflow  
 – requires output bandwidth to compute  
 delay	

• Can measure packet’s sojourn time 
 – direct measure of delay  
 – easy (no enque/deque coupling so works 
 with any packet pipeline).

���9

Sojourn Time

• Works with time-varying output bandwidth
(e.g., wireless and shared links)	

• Better behaved than queue length – no high
frequency phase noise	

• Includes everything that affects packet so
works for multi-queue links

���10

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 s

ize
 (m

s.
)

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 d

el
ay

 (m
s.

)Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck; 

80ms RTT; TCP Reno)
���11

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 s

ize
 (m

s.
)

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 d

el
ay

 (m
s.

)Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck; 

80ms RTT; TCP Reno)
���11

Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck; 

80ms RTT; TCP Reno)
25.00 25.05 25.10 25.15 25.20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (sec.)

Q
 s

ize
 (m

s.
)

25.00 25.05 25.10 25.15 25.20

0.
0

0.
5

1.
0

1.
5

2.
0

Time (sec.)

Q
 d

el
ay

 (m
s.

)

���12

Multi-Queue behavior

���13

a)Measure what you’ve got	

b)Decide what you want	

c)If (a) isn’t (b), move it toward (b)

Controlling Queue

���14

a)Measure what you’ve got	

b)Decide what you want	

c)If (a) isn’t (b), move it toward (b)

Controlling Queue

- Estimator	

- Setpoint	

- Control loop

���15

How much ‘bad’ queue
do we want?

• Can’t let the link go idle (need one or two
MTU of backlog)	

• More than this will give higher utilization at
low degree of multiplexing (1-3 bulk xfers)
at the cost of higher delay	

• Can the trade-off be quantified?

���16

0 20 40 60 80 100

75
80

85
90

95
10

0

Utilization vs. Target for a single Reno TCP

Target (% of RTT)

Bo
ttl

en
ec

k
Li

nk
 U

til
iz

at
io

n
(%

 o
f m

ax
)

���17

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

���18

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

���18

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

���19

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

���19

���20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

���20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

• Result holds independent of bandwidth and
congestion control algorithm (tested with
Reno, Cubic & Westwood).

���20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

• Result holds independent of bandwidth and
congestion control algorithm (tested with
Reno, Cubic & Westwood).

➡ CoDel has no free parameters: running-
min window width determined by worst-
case expected RTT and target is a fixed
fraction of same RTT.

���20

Algorithm &
Control Law

(see I-D, CACM paper and Linux kernels >= 3.5)

���21

• provides isolation - protects low rate CBR
and web for a better user experience.
Makes IW10 concerns a non-issue.	

• gets rid of bottleneck bi-directional traffic
problems (‘ack-compression’ burstiness)	

• improves flow mixing for better network
performance (reduce HoL blocking)

Eric Dumazet has combined CoDel with a simple SFQ
(256-1024 buckets with RR service discipline). Cost in

state & cycles is small and improvement is big.

➡ Since we’re adding code, add fqcodel, not codel.
���22

• thanks to Jim Gettys and the ACM, have
dead-tree publication to protect ideas	

• un-encumbered code (BSD/GPL dual-license)
available for ns2, ns3 & linux	

• in both simulation and real deployment,
CoDel does no harm – it either does nothing
or reduces delay without affecting xput.

Where are we?

���23

What needs to be done
• Still looking at parts of the algorithm but

changes likely to be 2nd order.	

• Would like to see CoDel on both ends of
every home/small-office access link but:	

- We need to know more about how traffic
behaves on particular bottlenecks (wi-fi,
3G cellular, cable modem)	

- There are system issues with deployment

���24

Deployment Issues

RTR/AP Cable  
Modem HeadendHome

Gateway

���25

Deployment Issues

RTR/AP Cable  
Modem HeadendHome

Gateway

Protocol  
stack

Device 
Driver DeviceLinux

kernel

���26

Deployment Issues

RTR/AP Cable  
Modem HeadendHome

Gateway

Protocol  
stack

Device 
Driver DeviceLinux

kernel

Phone 
CPU

3G  
Modem RAN SGSN?Cellphone

���27

Our thanks to:

• Jim Gettys	

• CoDel early experimenters,
particularly Dave Taht	

• Eric Dumazet	

• ACM Queue	

• Eben Moglen

���28

