
Lessons Learned Building a Secure Network Measurement
Framework using Basic NDN

Kathleen Nichols
Pollere, Inc.

Montara, CA, USA

ABSTRACT
The Named-Data Networking Project has moved from a multi-
university NSF-funded Future Internet Architecture project to an
open source codebase with world wide contributors and a growing
body of applications. Researchers have applied NDN to applications
like lighting control, vehicular communications, and augmented re-
ality but more work is needed to make the data-centric and security
features of NDN accessible. Users are currently required to become
experts on the internals of the codebase, a difficult task further com-
plicated by the lack of well-documented examples and the project
adding new features. While implementing a secure, distributed
network measurement framework for NDN, we encountered two
major difficulties: the lack of a library of application-usable commu-
nications models (built on top of the NDN layer) and the difficulty
of integrating trust rules with the NDN codebase.

This paper describes our NDN network measurement framework
and the co-developed tools that implement its secure, publish/sub-
scribe communications model. Our goals are both to present the
network measurement framework and to motivate developers to
evolve NDN by creating frameworks, libraries, and includible head-
ers rather than bloating NDN’s waist.

CCS CONCEPTS
• Networks → Layering; Transport protocols; Security protocols;
Network measurement.

KEYWORDS
NDN, transport, trust schema, ICN, network measurement
ACM Reference Format:
Kathleen Nichols. 2019. Lessons Learned Building a Secure Network Mea-
surement Framework using Basic NDN. In 6th ACMConference on Information-
Centric Networking (ICN ’19), September 24–26, 2019, Macao, China. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3357150.3357397

1 INTRODUCTION
Modern distributed systems (cloud computing map/reduce, virtu-
alization, IoT, network monitoring) are information-centric and
employ one-to-many, many-to-one, and any-to-any communica-
tion patterns rather than the Internet’s source-destination model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN ’19, September 24–26, 2019, Macao, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00
https://doi.org/10.1145/3357150.3357397

Although IP multicast and anycast expand the definition of “destina-
tion”, the majority of Internet traffic follows a source-to-destination
model. As a result, modern applications use complex adaptation
code in order to translate between information-centric communi-
cations models and host-centric communication mechanisms. The
model mismatch makes the resulting systems complex and brittle,
e.g. an inherently distributed process ends up with a centralized
bottleneck in its implementation or a broadcast communications
model on a broadcast media ends up sending information in sepa-
rate connections. Information-Centric Networking (ICN), in par-
ticular, Named-Data Networking (NDN)[1], provides an excellent
foundation for modern applications due to its information-based
security and ability to exploit broadcast media. Originally devel-
oped as a Future Internet Architecture, current efforts are focused
on NDN for edge networks like Internet of Things (IoT) [31, 33],
building management [32], critical military communications [11],
solar energy reporting[18, 23], augmented reality[7], and vehicular
communications[20].

The range of NDN applications is encouraging but the lack of
application-enabling infrastructure is not. NDN’s core, or generic
primitives, can permit implementation of information-centric com-
munications models more efficiently than IP networking (e.g. [17])
but does not in itself implement a communications model. Internet
applications use models like sockets, streaming, transactions, and
publish/subscribe rather than calls to, or even awareness of, the net-
work or transport layers. NDN needs reusable packages that can be
used to implement a range of communications models and handle
the details of Faces and Interest and Data packet construction and
parsing, managing mechanisms that move and secure information
while integrating application-specific trust rules and application
layer data framing. Rather than expecting applications to function
without transport functionality, the original NDN architecture en-
visioned moving transport functions out of a kernel-based layer
and into application-accessible libraries and a data synchronization
Sync building block where they could be customized into bespoke
transports that meet the needs of important classes of applications.
Although this approach is laid out in the “Transport” section of [3],
it has had insufficient use and attention, leaving application writers
to work directly with network layer primitives. As the develop-
ment of the Internet’s protocol stack shows, core mechanisms are
best kept simple while specialization happens on top of them [12]
and new physical media can be added below. The Internet’s use of
this “hourglass model” allowed it to dominate competing protocols
while continuing to enable innovation. Jacobson [19] builds on this
history and makes the case for more attention to following the
model in NDN.

Linking application communications closely to network layer
primitives is creating twomajor issues. First is that working directly

https://doi.org/10.1145/3357150.3357397
https://doi.org/10.1145/3357150.3357397

ICN ’19, September 24–26, 2019, Macao, China Kathleen Nichols

with network primitives causes implementers to add features to
the generic core rather than creating code modules to implement
features on top of the generic core. This can be seen in [8, 39] which
both have the goal of publish/subscribe communications over an
Interest/Data network layer. iHEMS [39] creates an architecture
and proof-of-concept for a secure ICN-based publish/subscribe
infrastructure for a Home Energy Management System with inno-
vative group key management. Its publish/subscribe API is directly
mapped to network layer primitives and creates “pesistent” sub-
scriptions by altering the architecture of the network layer using a
single Interest to enable the forwarding of multiple Data packets
which changes the model to one where PIT state is not consumed
by Data packets. This alters the critical flow balance attribute of
the architecture and alters the forwarder implementation. COPPSS
[8] has the goal of an efficient pub/sub content delivery system
for ICN. The authors note that equating a subscription query with
an NDN Interest (again trying to make direct use of the network
layer) leads to obvious problems since a single Data annihilates an
Interest. Rather than making use of the built-in multicast primitives
of NDN (where Interests serve the role of “joins” in PIM-SM), they
propose COPSS and COPSS-aware routers which have an additional
element, a Subscription Table, requiring an altered forwarder im-
plementation. A recent paper develops a framework for ICN remote
method invocation [16]. The authors have the stated goal of making
minimal changes to protocols and forwarder behavior, but their
approach does make idiosyncratic use of the FIB in order to create
a particular connection-oriented client-server path to reflect the
client-server nature of the relationship created by the required four-
way handshake. Interoperable deployment of NDN will be difficult
or impossible with multiple flavors of its network protocol and
variations in Forwarder requirements will complicate development
of measurement and management approaches.

The second issue is the lost opportunity to move toward usable,
shareable solutions that provide packages, templates, libraries, and
includible headers to implement communications models, evolving
a best practice and toolkits for each. The lessons learned in im-
plementing each NDN application are lost because they cannot be
generalized, shared, and used to ease the writing of further future
applications. Projects to develop reusable modules exist [1, 2], but
it does not appear that NDN developers are taking the “dogfood”
approach of using work developed in earlier projects as scaffolding
for further work. Code lacks documentation to guide a user and
the applications work at the level of Interests, Data, Faces, and
network-specific elements of Names. Moisenko et. al. [22] propose
an API for a consumer/producer communications model using data
dissemination in NDN networks with a strict separation of “two pro-
gramming abstractions: one for consumer applications, and another
one for producer applications” and does not include a Sync block.
The github code uses the deprecated selector Interest field, is not
documented and appears to be dormant (no updates in two years).
Although a few Sync protocols have been developed [35], PSync
and ChronoSync appear to be the only ones in active use. Both
of these synchronize on producer-specific streams of sequentially
numbered Data, ChronoSync using cryptographic state digests and
PSync using and Inverted Bloom Filter to capture the state of a pro-
ducer’s set of datastreams. Abraham et. al. [5] seek to improve ICN
usability by adding a non-user space Information-Centric Transport

(ICT) to the architecture. In addition to being added to end-points,
processes running flavors of this ICT must be deployed by network
operators on intermediate nodes. This is presented as a general
model with generic examples as the authors note that the true
needs and requirements of ICN applications are as yet unclear. ICTs
are not currently easing the writing and securing of applications
and the need for operator intervention for their use adds some
complexity to deployment.

We became intimately acquainted with all of these issues while
creating a NDN-based network measurement protocol, an impor-
tant application championed by NIST.1 Thus far in NDN devel-
opment, measurement has attracted little attention but new ap-
proaches are needed because NDN’s communications are not based
on IP’s "endpoint" and "flow" abstractions. Further, NDN’s stateful
forwarding results in NDN Forwarding Daemons (NFDs) containing
a lot of operationally useful information. A network measurement
approach that makes this and other NDN network health data se-
curely available to network operators is essential to evolve NDN
from "research vehicle" to "practical networking infrastructure".

The need for privacy and security in network measurement is
widely acknowledged but has been mostly unaddressed in the large
number of number of measurement platforms created for various,
sometimes overlapping, purposes [6] as the Internet evolved. The
IETF LMAP Working Group, chartered to develop an information
model and protocols for the secure measurement and control of
network access devices, outlined a measurement framework in
[14] that enumerates important privacy issues and security threats
but does not suggest architectural or protocol means to mitigate
them. An initial NDN Network Measurement Framework proposed
in [26], largely consistent with [14], also acknowledges, but does
not address, the need for data confidentiality and security via an
appropriate authentication structure. It is past time to move the
need for security in network measurement into reality.

We designed and prototyped a Distributed Network Measure-
ment Protocol (DNMP)2 as a secure, role-based framework for
requesting, carrying out, and collecting measurement of NFDs.
DNMP applications both send and receive data that is organized
by hierarchical topics, rather than by producers, requiring a new
NDN transport. Our design process uses a bespoke transport model
of includible header files and customizable templates to ease de-
velopment as well as to create an extensible approach for users
with more interest in gathering measurements than in learning the
details of the NDN codebase. The bespoke transport model gives a
framework for developing user space transports for NDN on top
of the basic NDN primitives which, in our experience, provided a
sufficient network layer on which to create a useful publish/sub-
scribe transport; all issues were elsewhere in the stack. For example,
NDN provides security primitives that ensure provenance of Data,
simple solutions for key distribution problems [27, 41], and a trust
schema model that allows for specifying trust based on application
name structures[36]. Unfortunately for application writers, going
from trust specification to secured application has been a complex
task lacking in tools for validating or securing trust schemas. Our

1Initial work was funded by NIST under 70NANB18H186.
2Some (including one reviewer) have pointed out that DNMP could be used for man-
agement as well as measurement. If more management applications are developed, the
name is easily changed while initials remain the same.

Building a Secure Network Measurement Framework ICN ’19, September 24–26, 2019, Macao, China

measurement protocol was co-developed with a Versatile Security
(VerSec) toolkit that integrates with the transport framework to
simplify integration of trust rules. We agree with Abraham et. al.
that true needs and requirements of ICN applications will need to
come from implementing them and we found our small-scale “dog-
food” approach served DNMP, VerSec, and the bespoke transport
model well.

Network measurement proved an excellent NDN application,
matched well to its communications and security. Communications
are inherently multi-way: e.g., a measurer querying network de-
vices for status is one-to-many and those network devices reporting
is many-to-one. DNMPwas implemented as a fully functional proof-
of-concept (POC) deployed on machines running Linux and MacOS
connected by a single wifi network shared with other IP traffic.
Section 2 describes DNMP. Section 3 provides more background on
enabling modules used by DNMP that can be used in any bespoke
transport. Section 4 summarizes our proof-of-concept system and
gives our current approach to multiple segment network deploy-
ment. Section 5 covers future directions and Section 6 concludes.
DNMP, its bespoke transport modules, and VerSec are GPL licensed
open source.

2 THE DNMP FRAMEWORK
DNMP is a secure role-based distributed framework for NDN mea-
surement. It is designed to collect and export locally obtained mea-
surements (e.g., at a particular device) only in response to properly
authorized local or remote requests where measurements may be
secured for privacy. Authorization uses the role of the requestor
and can be even more fine-grained including types and times of
requests. Measurements can be simple status counts or statistical
distributions from a particular device or combinations of exported
data from several devices, reported on demand or at regular inter-
vals. DNMP provides a communications framework and API for its
application processes.

Soliciting and collecting network measurements requires one-
to-many, many-to-one, and any-to-any communications about in-
formation rather than connections between devices, making the
publish/subscribe communications model a natural fit. Pub/sub has
over 30 years of history but has become more important in recent
years as it is applicable to a range of modern problems from data
center tasks to IoT. In particular, in the open source MQ Telemetry
Transport (MQTT)[4], publishers and subscribers communicate
through hierarchically structured topics and subtopics, using publi-
cations to implement message passing and event signaling. Publish-
ers, which may also be subscribers, do not have specific knowledge
of subscribers and publications are made available asynchronously.
The number of publishers and subscribers to a topic can range from
none to as many as the underlying system supports. This commu-
nication model of MQTT is attractive, although its implementation
on IP networks is not information-centric.

Portions of the DNMP Framework, like a publish/subscribe Sync,
are quite general. With the motivation of following a “dogfood”
approach and of creating packages that can be utilized in other
NDN applications, DNMP was used as a prototype application for
two other Pollere projects, bespoke transport and versatile security
(VerSec), described here as they apply to DNMP.

Device n
NFD

NOD

IP Stack

Device
Status

Probes

Authentication
Services

(keys)
Device i

Client

Audit
Client Logger

LoggerClient

DNMP Namespace

Interests & Data

DNMP API

shim
modules

sync
publications

shim
modules

sync

Interests & Data

shim
modules

sync

be
sp

ok
e

tra
ns

po
rt

Figure 1: Block Diagram of DNMP

2.1 Basic Operation
DNMP has three required application types, based loosely on [26]:
Probes, Network Observer Daemons, and Clients. Probes are func-
tions that perform measurements at the direction of a Network Ob-
server Daemon (NOD) while Clients request measurements. Probes
run as subroutines or threads in a NOD. Clients can run anywhere
in the network. The Device n block in Figure 1 has been expanded
to show required and optional portions of DNMP. NODs are persis-
tent processes, one-to-one with NFDs, with installed Probes that
access measurements from the NFD and (potentially) from an IP
stack or the device hardware. Client processes may be ephemeral,
varying in complexity and amount of user interaction. Clients may
be implemented as shell utilities that initialize, run, and terminate
immediately or background tasks that continually monitor net-
work measurements. Bespoke transport functionality is provided
by a pub/sub Sync and by Shim modules. The shim implements
a simple, intuitive DNMP API to the processes, integrates DNMP
trust rules, and handles the interface to a Sync protocol. Shims
use run-time libraries from VerSec to ensure properly validated
packets are received from and constructed for publication by the
Sync and provide subscription callbacks. DNMP security rules are
specified in a trust schema that links identities and keys to com-
ponents of publication names. The Authentication Services block
represents the set of configurable but strict conventions that DNMP
imposes on existing NDN security mechanisms like signing keys,
signing chains, key enclaves (PIB and TPM), trust schemas, identi-
ties, verifiers, etc. (sections 2.4 and 3.3). Loggers and Audit Clients
are additional DNMP applications under development (section 3.2).

The DNMP API in Figure 1 takes a topic, target and content
from DNMP applications and creates publications and subscription
requests that are passed to the Sync which converts these into In-
terests and Data to pass to the NFD (section 3.1). The Sync uses
Interests from the NFD to update subscriptions and extracts publica-
tions in matching topics from Data to pass to the shim. DNMP uses
two topics to solicit and collect measurements, command and reply.
Clients solicit network measurements from targets via publication
in command topics and receive the measurements by subscribing to
associated reply topics. NODs subscribe to commands and publish
replies whose name is derived from the corresponding command.
Reply publication may be used to indicate successful command
execution and/or command receipt and contains the result or name
of the result.3 Receipt of a new command causes a NOD to execute

3Commands have a target but replies do not. A reply is targeted to the command,
not its source Client, accomplished by starting a reply name with a prefix that’s a
transformation of the related command.

ICN ’19, September 24–26, 2019, Macao, China Kathleen Nichols

NFDn
Extract

unsatisfied
interests GeneralStatus

NODn

unsatisfied interest count
 : NODn @12:31:00

unsatisfied interests
: NODn? request

GeneralStatus

DNMP Topics

Reply
Topic

Command
Topic

Trigger

Figure 2: Unsatisfied Interests Probe

a particular Probe; the command publication name contains the
information necessary for execution. As command and reply topics
are related, they are handled by the same Shim, CRshim. The com-
mand API passes the information content of commands and the
types of entities for which they are intended (the target). Target is
used by the DNMP framework and becomes part of the publication
name. Although publication names are constructed as NDN Names,
they are not visible “on the wire” and do not need to have any rela-
tionship to network level abstractions like routing prefixes, node
names or addresses. Thus DNMP commands identify target NODs
using specifiers like "all", "local", "adjacent", configured identities or
particular attributes. CRshim and its API includes only the elements
required by its pair of topics; one Shim instance is responsible for
handling the CRshim publications for a specific target.

Conceptually, Probes have a trigger, a source, an action, and a des-
tination. Triggers can be immediate (i.e., “do this now”), timer-based,
or condition-based. Trigger conditions can be anything that is ap-
propriate for a probe, ranging from changes in particular tracked
status indicators (e.g. content store size or link utilization) to the
publication of new data to a topic (e.g. by another probe). A source
can range from NFD counts and status values to timers to topic sub-
scription updates. An action can be as simple as reading a counter
but may include more sophisticated computation. Destination is
the name the probe output is published under, either extracted from
a command or configured as part of the Probe. In Figure 2, a Probe
responds to the immediate trigger of a new command requesting
the unsatisfied Interests count. The Probe uses the GeneralSta-
tus data block of the NFD Management Protocol (the source) and
takes the action of extracting the number of unsatisfied interests to
publish in a timestamped reply in (sub)topic NFDData/Unsatisfied-
Interests/NODn (the destination) where it can be accessed by any
authorized subscriber. Publication of probe results can be used to
trigger another probe that subscribes to that topic.

2.2 Identities and Publications
A Client’s DNMP role determines what it can access and is set at
runtime, deriving from the keys available in the login identity’s
TPM (Trusted Platform Module). Client roles of operator, user, and
guest are used to determine capabilities, e.g. the right to issue cer-
tain commands to certain target NODs. Currently, capabilities link
roles to accessible targets, with user limited to local and operator
permitted to target anything. The trust schema supports extensive
specialization that can allow, for example, designated users to issue
designated commands to designated NODs at particular times of
day. Both Client identities and machine or device IDs are required

components of DNMP names, adding who and where forensic infor-
mation to the intrinsic what and when. Access control is generally
assymetric e.g., clients can’t issue replies, and NODs can’t issue
commands, preventing compromised NODs from being used to
attack DNMP.

NOD identity derives from its host’s configuration and its DNMP
keys, i.e. identity is derived from an authorized configuration entity
for the particular network. Where measurement data privacy is
required, access to decryption keys will be more limited than access
to the data itself in order to enforce more fine-grained control. If
privacy is requested for a reply, it is encrypted with the public key
of the identity that published the command.4 Additional results
may be published under any name and the publisher can generate
symmetric encryption keys, good for specific data and over specific
intervals of time, to be used as symmetric AES encryption keys for
the data and publish these keys with local Authentication Services,
using asymmetric encryption, in a key enclave. Use of symmetric
keys reduces the computational overhead on NODs and limits a
subscriber’s ability to decrypt measurement data to that collected
when a specific key was in use. The exact approach depends on per-
formance trade-offs (time to check identities vs time to send/receive
data) and such considerations as whether security is compromised
by knowing the value or the existence of a particular metric. Fre-
quent updates of encryption keys allows the effective removal of
clients.

The format and structure of full publication names (section 2.4)
are used to enable fine-grained role-based security by expressing
roles and permissions in exact match trust schema rules. This is
exactly how the NDN trust model relates to its names [36, 41]:
DNMP publication names are NDN names that make use of those
naming conventions[37]. Publications must be signed with the
proper identities so that the security rules, embodied in a trust
schema, can be applied.

Publishing commands as Data rather than through signed In-
terests lets DNMP take advantage of the delivery properties of
Data where all interested entities can access the published Data.
In contrast, an Interest is consumed by a single Data response,
making it unreliable for dissemination to a group of unknown size
and enforcing one-to-one communications. In addition, command
publications can be used to provide a log that can be audited if
necessary since they contain all the forensic information of who
did what to whom and when. As publications are Data, this audit
trail can be created without perturbing the operation of DNMP.
All publications contain a timestamp, covered by the signature,
that serves triple duty: to bound the state needed to prevent replay
attacks, to bound publication lifetime, and to determine one-way
and round-trip response times.

Publications remain local until or unless there is an authorized
remote subscriber. This is fundamentally different from several
existing NDN sync protocols where Content has a long-lived utility
(e.g. video, newspapers) and provision of transparent longer-term
caching is automatic. CRshim communications are more akin to an
ephemeral RPC request/response and generally there is no reason
to preserve Replys, though individual Client applications might

4The NOD gets this public key to validate the command; encrypting with it means
only that identity can decrypt the reply.

Building a Secure Network Measurement Framework ICN ’19, September 24–26, 2019, Macao, China

store a history of results. DNMP’s bespoke transport uses different
shims to implement the specific communications models required
by specific tasks, allowing storage tasks for content that needs to
be available longer than its network-layer lifetime to be separated
from ephemeral communications tasks so that storage solutions
can be made specific to the storage intent (section 3.2).

2.3 Client and NOD Shim Use5

Shim modules provide intuitive APIs and translate them to the
topic-oriented view of a pub/sub Sync. Each shim has an associated
trust schema used, via a run-time schema library, to handle all the
publication construction, signing, validation and parsing issues
(section 3.3) and implements a specific API. DNMP applications
(e.g., Clients, NODs, Probes) use only this API to communicate.
Authentication checks are performed by a validator module (section
3.3) called from the Sync so that any command passed “upward” to
the callback by the Sync has already been checked for format.

The pseudocode templates of Figure 3 show how shims stream-
line NOD and Client code. Current Clients are executed from the
command line, with arguments for probeType and probeArgs. NODs
and Clients create one CRshim6 per target; successful creation
means execution can continue. NODs use three targets: those specif-
ically addressed to them (my_ID()), local topics from this device,
and to all. NODs invoke a waitForCmd method on each shim to
start its subscription. A shim that receives a validated publication
invokes the supplied callback with arguments from the publica-
tion. The callback results in a NOD probeDispatcher invoking the
specified Probe, passing in probeArgs, and, placing the returned
value in the Content of a reply packet derived from the command.
Clients call a doCommand method (passing in the desired probe-
Type, probeArgs, and callback) which subscribes to the expected
reply topic, builds and publishes the command. A validated pub-
lication in the reply topic invokes the callback, passing the result
from the content field as an argument. The callback processes the
reply, here printing and exiting. A more complex Client could issue
more commands, possibly based on reply content.

2.4 Publication Names and Signing Keys
DNMP publication names are constructed to reflect their functional-
ity and the trust schema security model. Trust schema rules express
organizational and operational policies as syntactic relationships
between the keys of a publication’s signing chain. These signing
rules establish which identities have the authority to publish under
which name prefixes. Since any name component can be matched
against either a component in another key or a literal in a trust
schema template, these rules allow fine-grained control over exactly
what an identity can do. For verifiability, simplicity and robustness,
trust schemas do only equality comparison between name compo-
nents, those components must be at fixed locations in the name,
and signing relationships must strictly follow the schema’s signing
chain specification. Command and Reply publications have a times-
tamp component that bounds their lifetime and all keys (including
trust schemas which have the form of keys) have components which

5This section describes the approach of the POC; the in-progress version is additionally
streamlined by with c++ Promises and a more capable shim.
6Shim modules for future topics will use existing modules as a template.

NOD Pseudocode
auto probeDispatch(Command c) {
auto pType = c["probeType"];
auto pArgs = c["probeArgs"];
return (probeTable[pType])(pArgs);

}
string targets[] = {"nod/local","nod/all","nod/my_id"}
for (t: targets) {
auto s = CRshim(t);
s.waitForCmd(probeDispatch);

}
Shell Utility Client Pseudocode

void processReply(const Reply& r) {
cout << r << endl;
exit(0);

}
int main(int argc, char∗ argv[]) {

... parse arguments
try {

CRshim s(target);
s.replyTimeout(replyWait, doFinish);
s.doCommand(ptype, pargs, processReply);

} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;

}
}

Figure 3: Pseudocode templates for NOD and Client

specify their validity period, allowing for fine-grained control not
only of who can do what but also when.

Figure 4 shows the DNMP command and reply publication Name
format where Name Components are grouped by function and writ-
ten as <group name>for readability. (A group can contain multiple
components or groups.) Conventionally, bold indicates literal con-
tent, forward slashes (/) denote component separation, and vertical
lines (|) are used for separations inside a component. The reply
name format uses the domain and target groups from the command
that caused the probe to execute, changes the topic to reply, in-
cludes a commandIdentifier (cmdID) group that is an exact copy
of the final three groups of the corresponding command, and ap-
pends its own three groups that give the number of publications in
a reply7, its unique identifier, and its timestamp. Specification of
<root> is up to the local network administrator (by addition to the
DNMP basic trust schema) and is used to construct the certificate
for its instance of DNMP. Examples include root = /ndn/com/big-
co/netops/sanjose or root = /myHouse. NOD identity is a function
of the intrinsic host or device identifier, e.g. an id number (6) or tag
(mac_laptop) or multi-part identifier (building10|floor2|gateway6)
but is contained in one component. Origin gives the name of the
machine where the command was published and is intended for
forensic purposes. All of the name components, with exception of
probeType and probeArgs for a command and the Content for a
reply, can be supplied by CRshim using the run-time trust schema
to fill in publication names. Publication names capture the trust
7Where publication must fit in a Data packet.

ICN ’19, September 24–26, 2019, Macao, China Kathleen Nichols

Figure 4: command and reply names

and permissions used by CRshim communications and only need
to be used in the shim (see 3.2 and 3.3).8

Figure 5 shows the signing rules for command and reply publica-
tions. Each publication type has Components that the trust schema
maps directly to specific types of keys that must be signed in the
order shown. Using “cpub” and “rpub” as shorthand for the pub-
lications, “<=” should be read as “is signed by.” Recall (2.2) that
commands use NOD specifiers, which can be identities or literals
whose use is governed by role, while replies must have NOD iden-
tities, which are certified through the device configuration path.
Each name is at a fixed location in the signing chain. Rules specified
by DNMP’s trust schema are applied to the publications it sends
and receives to the Sync rather than to the packets on the wire.

2.5 Example: a command reaches many NODs
Pub/sub communications affords efficiencies in network measure-
ment that can be illustrated by an example. Consider a blackhole
utility that lets an operator query all the network’s devices to find
each NFD’s blackholes (i.e., NFDs with no route to a prefix). The
“straightforward” approach of enumerating and querying each of
the NODs individually could be very inefficient. In DNMP, a black-
hole query can be issued to an entire network at once by publishing
a single item to a command topic (one-to-many) and requesting a
response from NODs with matching blackholes, i.e. no route. Re-
sponses from these NODs are published to the associated reply
topic and retrieved by subscription to that topic (many-to-one).

In figure 6 the central gray arrow shows the progress of the
measurement and the namespace with time. Short arrows are used
to indicate clients and NODs publishing data in the namespace or
receiving subscription callbacks due to new data in the namespace.
8Names should use fewer components when prototyping is completed.

Figure 5: Signing chain for command/reply packets

DNMP Namespace (<domain>=<root>/dnmp)
Client

NODs

operator George
enters “blackhole”

utility on
console raspi51

callback causes NOD17 probe
execution; return no route

shim
receives result
from NOD17

<domain>/nod/all/command/operator/George/raspi51/
probe/NFDstatusQ/!exists|RIB:root|device|123/987654320

<domain>/nod/all/reply/operator/George/raspi51/probe/NFDstatusQ
/!exists|RIB:root|device|123/987654320/0/nod/17/987655100

<domain>/nod/all/reply/operator/George/raspi51/probe/NFDstatusQ
/!exists|RIB:root|device|123/987654320/0/nod/23/987655100

callback causes NOD23 probe
execution; return no route

callback causes NOD i probe
execution; has route, no reply

tim
e

Propagation and processing delays
mean NODs can get command

publication at different times

timeout: shim
returns results

shim
receives result
from NOD23 callback causes NOD j probe

execution; has route, no reply

utility prints & exits

Figure 6: Multiple NODs respond to blackhole utility

“|” represents the namespace and the arrow direction relative to
the “|” should be interpreted as the direction with respect to the
namespace. The NODs have initialized by subscribing to nod/local
and nod/all command topics and are awaiting new publications.
Operator George on console raspi51 runs a blackhole client that
publishes a command to all NODs asking them to issue a local NFD
status query for routes to device 123 (RIB:route|device|123) and
respond only if there are none. The shim publishes the command
and subscribes to the corresponding reply topic where NODs will
publish any results. The publication of this command causes a sub-
scription callback to NODs subscribed to nod/all. NOD17 broadcasts
its reply saying it checked at time 987655100 and didn’t have a route.
The client’s pub/sub sync adds NOD17’s reply to its subscription
digest and solicits (via Interests containing its digest) any others
prompting NOD23 to broadcast its reply that it didn’t find a route
when it checked at 987655200. The other NODs in the network have
routes to that location and do not respond.9 When the Client’s topic
digest for the reply topic contains both of these, further Interests
will time out.

3 ENABLERS: SYNCPS, SHIMS, AND SCHEMA
This section covers the pub/sub Sync, describes the functions of
the shim, and DNMP’s use of VerSec. Though NDN literature and
9Variations could report only if a route is found or all NODs could report route status.

Building a Secure Network Measurement Framework ICN ’19, September 24–26, 2019, Macao, China

codebase provide much work to leverage regarding security and
key distribution[27, 28, 41]), NDN lacks an approach to securing an
application’s trust schema or making it usable at run-time. DNMP
benefits from being co-developed with VerSec and the bespoke
transport model that makes use of it. The rest of this section de-
scribes features that enable DNMP’s secure communications and
simplified API: syncps in section 3.1, the role of the shim in section
3.2, and role of VerSec’s schemer in section 3.3. The specifics of im-
plementation are for the proof-of-concept implementation, though
some in-progress work is discussed.

3.1 Pub/sub sync
Early in our work, it appeared that PSync [40] might work for
DNMP but its communications model is one of multiple consumers
and a producer where producers can replicate content in a separate
communications context to provide redundancy. PSync proved a
poor fit to a model where applications both publish and subscribe
through hierarchically named topics and individual publications
are distinguished by their names and creation timestamps. DNMP
publications are, generally, a unit of ephemeral communication.

syncps is a lightweight publish-subscribe Sync, partially mo-
tivated by MQTT, that enables topic-based communications. The
MQTTpub/sub protocol has over a decade of development andwide-
spread use, including the open source HomeAssistant [9] and Sam-
sung’s IoT ARTIK Cloud [30]. Its communications model presents
simple calls and message types with three delivery quality-of-
service types: at most once, at least once, and exactly once (for
more on general pub/sub delivery QoS see [10]). Additional assured
delivery semantics, caching and long-term storage, and other cus-
tom functionality are easily layered on top of this model. Less
appealingly, MQTT is implemented on TCP and uses TLS and
userid/password for security. Compared to MQTT, syncps shows
the value of using NDN as it removes the need for a centralized
broker and enhances security. syncps implements a simple delivery
and any-to-any communications over NDN, providing API methods
of subscribeTo (a Topic) that specifies a callback and publish that
submits an item for publication in a Topic.

A syncps instance announces its set of currently known publica-
tions by sending an Interest containing a Difference Digest [15, 21].
Difference Digests solve the multi-party set-reconciliation problem
without prior context and with communication proportional to the
size of the subset difference. Receipt of these Interests does three
jobs simultaneously: (1) announces new publications, (2) notifies of
publications that peer(s) are missing and (3) acknowledges publica-
tion receipt. The first results in sending an Interest to get the new
publications. The second results in satisfying the Interest with a
Data containing all the missing publications that will fit. The third
results in a progress notification sent up the protocol stack so any-
thing waiting for delivery can proceed. syncps makes use of NDN’s
optimizations for broadcast media where an NFD uses Interests it
hears to suppress its own and gets any Data for which it has an
outstanding Interest. This means that one-to-many publications
(like the command sent to nod/all in the blackhole example of
sec.2.5) require one Interest and one Data to be sent, independent
of the number of entities in the target set (the theoretical minimum

Pub/Sub publish(Publication&& pub);
subscribeTo(Name&& topic, UpdateCb cb);

Upcall Config setIsExpiredCb(IsExpiredCb cb);
setFilterPubsCb(FilterPubsCb cb);

Security Config setPubSecurity(PubSecurity&& ps);
setPacketSecurity(PacketSecurity&& ps);

Pub/Sub methods access the communication functions of syncps.
Upcall config lets the shim control pub lifetime (IsExpiredCb) and
delivery priority (FilterPubsCb) policies of syncps mechanisms.

Security config lets the shim supply the signing info and validator for
pubs (PubSecurity) and NDN packets (PacketSecurity).

Figure 7: syncps public methods (API)

possible for reliable delivery). Similarly, replies require at most10

one Interest and Data sent per responder. The command-to-reply
latency for the first response is twice the network propagation time
(meeting the theoretical minimum bound) and each additional reply
requires at most two additional propagation times.

The Interest’s digest size can be controlled by publication lifetime,
dynamically constructing the digest to maximize communication
progress[24, 25] and, if necessary for a large network, dynamically
adapting topic specificity, e.g., a client is only interested in replies to
its most recent command(s). In our small-building-scale prototype
implementation, lifetime bounding11 keeps Interests small so the
dynamic adaptations have yet to be implemented.

As described in sec.2.2, publications are NDN Data objects se-
cured by a trust schema which are bundled into another Data packet
when syncps satisfies an Interest who’s digest requires them. This
on-the-wire Data packet is secured using a standard NDN validator.
Since the trust schema protects against application level threats,
syncps defaults to a SHA validator to protect against data corrup-
tion but relies on the local network’s security to protect against
DoS attacks and information leakage. The syncps API allows any
validator to be set, so shims can configure the NDN communication
layer appropriately for site-specific threats.

Syncps implementation details are described in its GPL’d code
and documentation available on github and are not covered here.
What’s relevant to DNMP is the API presented to the shim layer
(Figure 7) which supports the policy/mechanism separation needed
to create bespoke transports. Shims implement application-focused
communication abstractions, described in the next section, using
the mechanisms and policy hooks supplied by syncps and schemer.
For example, CRshim uses the syncps publish and subscribeTo mech-
anisms to implement the basic command/reply exchange, the is-
Expired upcall from syncps to implement its publication lifetime
policy and the filterPubs upcall to implement its communication
progress policy.

10As mentioned earlier, multiple publications can be aggregated into one Data which
typically results in a multiplicative reduction in both packet exchanges and average
response latency. See [21, sec.5] for background.
11Command and reply publication lifetime is already kept short to minimize replay
protection state burden.

ICN ’19, September 24–26, 2019, Macao, China Kathleen Nichols

3.2 Shims customize transport
Distinct DNMP topics require distinct (though similar) shims. CR-
shim is an ephemeral, RPC-like invocation of distributed measure-
ment (by Probes) to retrieve a result. It has at-most-once delivery
QoS and must be protected against replay. CRshim achieves this
by assuming that NOD clocks are loosely synchronized,12 and in-
terpreting a publication’s timestamp field as the start of its life.
Publications are “active” (meaning syncps will give them to a peer
that doesn’t have them and that peer may deliver them to a sub-
scriber that doesn’t have them) for 5 sec13 after their creation, then
become inactive. Inactive publications are never given to a peer or
subscriber but are kept in the syncps publication table for another
10 sec to prevent replays and churn due to clock skew. syncps has
to manage active and inactive publications to know when and if
to communicate them, but it knows nothing about the format or
semantics of publications. Thus publication lifetime is managed by
the shim indicating active/inactive via an upcall from and downcall
to syncps. In consequence, almost all the code is in syncps but the
application-visible interface and semantics are determined by the
shim.

Other DNMP communications models are implemented with dif-
ferent shims, in particular, storage entities have their own shim and
API.14 Returning to Figure 1, a Logger provides storage for asyn-
chronously generated measurements, i.e., those results not directly
returned via reply, e.g., measurements generated by a time-based
probe, results that are extremely large or inherently of archival
value, or for content that may need to be available longer than
the life of its publisher. Like NODs, Logger identity comes from
their host, thus authorized Loggers can be constrained to devices
with resources that can support their functionality. A Logger can
be physically located anywhere, including on the same device as
a NOD, but the device must have the required capabilities (e.g.,
“always on”, stable storage, a certain processing power). A Logger
can have sophisticated rules about when and what to archive, what
to overwrite, etc. but these are local policy decisions implemented
in its code and not part of their communications model. Loggers
subscribe to archive topics, where NOD probes publish measure-
ments, and subscribe to a different set of targets than NODs (e.g.,
“log/all” is not sensible but “log/any” could be useful). To offload
work and resource use from NODs, archive publications are only
subscribed by Loggers (i.e, not by Clients). If the archive publica-
tion has been appropriately signed and is otherwise well-formed, a
Logger publishes in a corresponding archived topic to indicate the
content of of the publication has been archived. NODs subscribe to
the archived publications and can use subscription notifications to
implement rules such as “at least one”, “at least n”, or “at least one
non-local” successful Logger subscription. An archive/archived
shim is similar to CRshim but its delivery QoS is at-least-N, replay
isn’t an issue, and it uses query/response topics.15 Since its goal is

12There are other, more complex, ways to accomplish this without assuming synchro-
nized clocks if, for example, the replay protection needs to function across reboots.
As synchronized clocks are generally useful for correlating network measurements,
DNMP devices already NTP clock sync, so 1 sec is a reasonable skew bound.
13Our initial timing for a home/small office style wireless network. Experience may
lead to changes.
14DNMP storage solution implementation is an in-progress design.
15The archive/archived shim adds NOD measurements to the database while query/re-
sponse lets Clients access them.

get items safely archived despite transient communication or device
outages, publications are considered active for 5 minutes after their
creation time (they still die 10 sec after becoming inactive). Some or
all of the Loggers’ archived measurements can be stored in a data-
base in the form of column stores or LSM (log-structured merge)
trees, which could make the data Client-accessible via SQL-like
queries fronting standard database packages like Apache Cassan-
dra or InfluxDB. Basic data queries using temporal and value based
range filters are stateless and have set-valued results (as opposed
to results tied to the state embodied in some query agent). We are
currently evaluating the trade-offs of different approaches.

An Audit Client can be used for operational audits. It subscribes
to all (or a critical subset of) command (and possibly all reply) top-
ics and thus can provide a secure, tamper-proof audit trail of all
DNMP actions and actors. Housekeeping rules on what to keep and
for how long are part of the audit client, not its communications
model. Auditors use a snoop shim which has very different lifetime
requirements. It never publishes anything itself; its purpose is to
deliver network peer publications to a local Audit Client subscriber.
Since it may not be configured with the trust schemas for those
topics (which means it may not be able to validate incoming publica-
tions) and it doesn’t know their lifetime rules, it should never send
a publication it has received back out to peers. Thus publications
are marked as inactive as soon as they’re received (to keep them
from being sent to peer(s)) but kept alive for 10 minutes (to filter
out duplicates of long-lived publications like archive requests).

3.3 Versatile security simplifies shim
A simple API often results in a complex implementation. This is not
the case with DNMP, in part due to a simple mapping of DNMP’s
pub/sub communication model onto the syncps API but mostly
because of an unexpected synergy between DNMP’s networking
and security requirements that resulted in a remarkable simplifica-
tion of the implementation.16 This is best explained with examples
from the CRshim. Consider the implementation of the Client-visible
doCommand() which must:

(1) Locate a signing key consistent with the client-supplied pa-
rameters and acceptable to the command topic trust schema.

(2) Fill in the missing topic information (a valid command topic
name has eight components of which the client supplies
three).

(3) Generate the valid reply name for the command and subscri-
beTo the reply(s).

(4) Publish the command, collect replies as they arrive and re-
turn a result to the Client when there are a sufficient number
or the command’s lifetime expires.

Item (4) requires only simple calls to the lower level syncps frame-
work but items (1)-(3) touch the core of DNMP’s Authentication,
Authorization and Access Control (AAA) model. The targets and/or
Probes that a client is allowed to put in commands are controlled
by the DNMP role signing key(s) held by the user that invoked the
client. The NDN library’s trust schema validator project [29] can
be used at a receiver to verify that the entire signing key hierar-
chy is valid, but the sender needs this to work in reverse, going
16An apparently unique instancewhere security requirementsmade an implementation
simpler and more robust rather than more complex and brittle.

Building a Secure Network Measurement Framework ICN ’19, September 24–26, 2019, Macao, China

from the keys held by the user to the command formats allowed
by those keys. Unfortunately, the library validator can’t be used
that way. Since trust schemas work by defining equivalence rela-
tions between name components and key names in a signing chain
and equivalence relations are bidirectional mappings, it’s always
possible to create a single validation structure that can be used to
both build and validate commands.17 This is the approach of VerSec
used by a DNMP-specific schemer library to make problems (1)-(3)
above trivial:

(1) Given the specified command components (target, probe-
Type and probeArgs), call the validator routine that returns
the key schemas for all keys that a) directly sign commands
and b) are compatible with the user’s roleType being set to
the user’s values.

(2) If there are no such key schemas, throw an error. Otherwise
call the NDN library routines that search the user’s TPM for
matching keys. If none, throw an error; if multiples, choose
the least privileged.

(3) Use this signing key to select the particular command schema
it signs and fill in the user’s values plus schema-specified
literal, computed and command-to-key correspondence val-
ues. If any field of the prototype command isn’t filled in,
throw a missing parameters error. Otherwise the command
is complete and ready to be signed and sent.

Using VerSec’s method, trust specifications are written in a simple,
declarative language matching the usual way NDN applications
describe trust rules (e.g., see [33, 34, 36, 41]). VerSec’s trust schema
compiler converts this specification to a compact, binary form that
can be signed and distributed as an NDN key. This signed schema is
the authoritative form of publications, used at run-time to validate,
parse, and build them, which makes publication security and syntax
transparent to NODs and Clients. This removes a coding burden
from DNMP implementors. More importantly, since all the site
specific policy information is in trust schemas which are loaded
and validated at runtime, clients and NOD binaries become portable
and oblivious to most network and configuration changes.

Run-time use of the trust schema is illustrated in Figure 8. The
gray arrows show signing relationships. For example, the Network
Key is the trust anchor which (indirectly) signs all role and device
keys as well as the trust schema. The black arrows indicate the
verification relationships between name components of keys, publi-
cations, and schema literals (bold in Figures 4 and 5). The run-time
schema records all signing and verification relationships in a com-
pact graph structure that can be traversed in any direction from
any point.18

4 IMPLEMENTATION STATUS
DNMP’s c++ POC includes a few probes and communicates via
syncps and a CRshim. The compiled trust schema is used by the
shim to build, validate, and parse publications. POC Clients are

17Think of the validator data structure like a set of building plans that are used by a)
the city planning department to guarantee that what’s built will conform to codes, b)
the building contractor to construct the building, and c) the city building inspectors to
verify that what was built matches the approved plans. A good validator framework
will support all these use cases and more.
18As opposed to the trust chain linkage derived from objects’ key locators which
enumerates only one branch of the trust tree from leaf-to-root.

Network
Key

Trust
Schema

Role
Key

Device
Key

NODClient command/nod/…
Publication

Sig
ns

Verifies &
Constructs

Figure 8: Trust Schema at run-time

Figure 9: Continuous pinger

invoked via the command line with flags for the probeType and
any probeArgs. Six Probes were implemented: four provide simple
access to metrics available via the NFD Management Protocol, one
is a continuous ping of a target, and one is a version of a black hole
client. All print a final line giving outbound and inbound times.
Probe functions are added to the NOD by registering them under
their probeType name. Probes return a string (in future, an NDN
TLV) that is placed in the Content field of the reply.

Initial performance numbers were on order of 600uS NOD-to-
client and 5-500mS client-to-NOD. Commands and replies should
have similar, sub-millisecond RTT (see sec.3.1).19On investigation
we discovered that NFD was rejecting the NOD’s syncps Interest
with a NACK rather than putting it in the PIT so performance in-
cluded the periodic Interest re-expression time (100s of mS), evident
in both the NFD General Status showing thousands of NACKs and
in the packet level debug log. This behavior is a clear violation
of the architectural intent expressed in [3, 38]. Subsequently, we
created an NFD code patch to allow proper broadcast behavior. The
improvements can be seen in Figure 9 where the first reply publica-
tion includes the registration overhead (a device dependent 1-3ms),
but subsequent pings show the same order of magnitude both NOD-
to-Client and Client-to-NOD. Optimization of registration could
reduce this.

Though not yet optimized, the POC is relatively efficient in lines
of code. DNMP-specific code is in four files: client.cpp (98 lines
of code), nod.cpp (68 lines), probes.hpp (probe functions of 3 to 36
lines), and CRshim (78 lines). syncps is 487 lines of code. The POC

19Local performance is bounded by signing+verification time which should be 100-
200uS for our test machines based on Supercop ECDSA/ED25519 benchmark results.

ICN ’19, September 24–26, 2019, Macao, China Kathleen Nichols

trust schema is expressed in 25 lines (excluding comments) over
three files: a top level file that contains the local network root cert
name, a site-independent specification of the POC’s three role AAA,
and the DNMP core definitions (e.g., name components). These are
compiled by the schema compiler into the binary trust schema
which is currently manually added to the shim. The shim, syncps,
schemer and run-time validator are all modern (C++17) header-only
includes, not libraries, which reduces the security perimeter and
allows all the code to be inlined and optimized, potentially making
it suitable for embedded environments. All code is GPL’d and on
Pollere’s github account20.

5 STATUS AND FUTUREWORK
DNMPprovides a frameworkwhere new features can be addedwith-
out the need to work out low-level network protocol and security
details. DNMP storage implementations (sec.3.2) are in-progress.
The existing code is compact, relatively easy to understand and writ-
ten with a view toward serving as templates for future development.
To that end, it is GPL licensed and publicly available.

The NFD Management Protocol was useful for creating proof-of-
concept probes but NFD needs better instrumentation. In-progress
work includes a Probe that keeps a t-Digest[13] measurement of the
time to satisfy Interests (TTS). This required NFD code changes as it
was otherwise impossible to access the values. NFD’s Measurement
Table is currently only used by Strategies and its Management Pro-
tocol interface was never implemented. An NDN community effort
to agree on forwarder instrumentation would be useful. DNMP can
provide the fine-grained role-based secure access to this instrumen-
tation.

NDN is rich in security features but they lack ease of use. The
versatile security approach employed by DNMP is a significant step
toward making NDN trust specifications more usable, straightfor-
ward and secure.

The current NFD implementation has been extensively tested
over point-to-point links but is both untested and unfriendly to
broadcast networks. We have encountered and fixed several sig-
nificant issues (including one that made it almost impossible to
broadcast Interests) and made patches available.

Our prototype goal is DNMP in a multi-device, multi-hop, single
administrative domain network with a locally controlled and admin-
istered trust schema. Thus everything has a signing chain derived
from the same root, including the signing chains that give every
device and individual their identities, configuration and roles giv-
ing the system a built-in trust root with no key distribution issues
and no external dependencies.21 A configuration-free approach
to making DNMP work across a multiple hop wireless networks
is being explored. DNMP hides low-level addressing/naming de-
tails at the application level via its target abstraction. Our current
multi-network strawman significantly extends the expressability
of target. A Client should be able to issue commands to any device
or collection of devices, such as “all the devices in this room”, “all
the devices in the bedrooms on the second floor”, or “all the devices

20At https://github.com/pollere/DNMP.
21Sharing of information between domains with different administrative owners is
not considered at this time.

in the house”, without knowing the network’s topological organi-
zation. Since application-visible targets have no relationship to a
NOD’s network identity or topological location, a mapping table is
already maintained by the schemer. Our present proof-of-concept
statically maps “local” to NDN prefix “/localhost” and everything
else to NDN prefix “/localnet” which is statically routed on ev-
ery node to all UDP muticast interfaces. This makes any and all
targets reachable at the cost of sitewide multicast of all DNMP pack-
ets.22 For a multi-network prototype, all nodes connected to two
or more networks create and disseminate per-network broadcast
prefixes to the per-network-scoped topic (/localhop) which allows
NODs to learn the name(s) of their attached networks and pub-
lish the bindings of their application level-name(s) to a ’directory’
topic published in "/localnet", making it available to all NODs. The
topic’s trust schema will guarantee provenance of the bindings and
appropriate setting of publication lifetimes will guarantee that the
information stays current but generates minimal traffic. Each NOD
will essentially provide a cache of this directory that local clients
can access via (to be designed) query topics using a nod/local
target.

6 CONCLUSION
In the course of implementing an NDN measurement protocol we
learned a few lessons, some of which are old lessons. Lesson 1
was “go back to basics”. By returning to the original simple net-
work protocol of NDN and following its early guidance to develop
application-specific transportmodels, we followed amodular design
path, separating the application processes from bespoke transport
modules on top of the NDN protocol. Lesson 2was to “make security
a first class citizen” which led to the extremely useful co-developed
VerSec project. Lesson 3 was to use a “dogfood” approach and lever-
age the interaction of DNMP, the bespoke transport modules, and
VerSec to make each piece better. Working this way gave lots of
insights and was quite enjoyable.

ACKNOWLEDGMENTS
The author would like to thank Van Jacobson who contributed
materially to DNMP discussions, versatile security, and editing
suggestions; also Abdella Battou and Lotfi Benmohamed of NIST
for suggesting and sponsoring DNMP.

REFERENCES
[1] [n.d.]. Named Data Networking. http://named-data.net/
[2] [n.d.]. Named Data Networking Code Base. https://github.com/named-data/
[3] [n.d.]. Named Data Networking: Motivation and Details. http://named-data.

net/project/archoverview
[4] 2019. MQ Telemetry Transport. http://mqtt.org/
[5] Hila Ben Abraham, Jyoti Parwatikar, John DeHart, Adam Drescher, and Patrick

Crowley. 2018. Decoupling Information and Connectivity via Information-Centric
Transport. In Proceedings of 2018 ACM Conference on Information-Centric Net-
working. ACM.

[6] Vaibhav Bajpai and Jürgen Schönwälder. 2015. A Survey on Internet Performance
Measurement Platforms and Related Standardization Efforts. IEEE Communica-
tions Surveys and Tutorials 17, 3 (2015), 1313–1341.

[7] J. Burke. 2017. Browsing an Augmented Reality with Named Data Networking.
In 2017 26th International Conference on Computer Communication and Networks
(ICCCN). 1–9. https://doi.org/10.1109/ICCCN.2017.8038469

22This cost is zero for single network sites but may be significant for large networks
with large amounts of DNMP traffic.

https://github.com/pollere/DNMP
http://named-data.net/
https://github.com/named-data/
http://named-data.net/project/archoverview
http://named-data.net/project/archoverview
http://mqtt.org/
https://doi.org/10.1109/ICCCN.2017.8038469

Building a Secure Network Measurement Framework ICN ’19, September 24–26, 2019, Macao, China

[8] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xiaoming Fu, and KK Ramakr-
ishnan. 2011. Copss: An efficient content oriented publish/subscribe system.
In Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems. IEEE Computer Society, 99–110.

[9] Home Assistant Community. 2018. Smarter SmartThings with MQTT and Home
Assistant. https://community.home-assistant.io/t/smarter-smartthings-with-
mqtt-and-home-assistant/42493

[10] Angelo Corsaro, Leonardo Querzoni, S Scipioni, Sara Tucci-Piergiovanni, and
Antonino Virgillito. 2006. Quality of Service in Publish/Subscribe Middle-
ware. Vol. 8. https://www.researchgate.net/publication/237100885_Quality_
of_Service_in_PublishSubscribe_Middleware

[11] DARPA. 2018. Secure Handhelds on Assured Resilient networks at the tactical
Edge. https://www.darpa.mil/program/secure-handhelds-on-assured-resilient-
networks-at-the-tactical-edge

[12] Steve Deering. 1998. Watching the waist of the protocol hour-glass. In Keynote
Address at 6th IEEE Int. Conf. on Network Protocols.

[13] Ted Dunning and Otmar Ertl. 2019. Computing Extremely Accurate Quantiles
Using t-Digests. CoRR abs/1902.04023 (2019). arXiv:1902.04023

[14] Philip Eardley, Al Morton, Marcelo Bagnulo, Trevor Burbridge, Paul Aitken, and
Aamer Akhter. 2015. A Framework for Large-Scale Measurement of Broadband
Performance (LMAP). RFC 7594 (2015), 1–55.

[15] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. 2011.
What’s the difference?: efficient set reconciliation without prior context. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Toronto, ON, Canada,
August 15-19, 2011. 218–229.

[16] Michal Krol et al. 2018. RICE: Remote Method Invocation in ICN. In Proceedings
of 2018 ACM Conference on Information-Centric Networking. ACM.

[17] C. Gundogan, P. Kietzmann, M. Lenders, H. Petersen, T. Schmidt, andM.Wahlisch.
[n.d.]. NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT.
Proceedings of 2018 ACM Conference on Information-Centric Networking ([n. d.]).

[18] Small Business Innovation and Research. 2018. Field Gateway Distributed Trans-
action Ledger for Utility-Scale Solar. https://www.sbir.gov/sbirsearch/detail/
1523933

[19] Van Jacobson. 2019. Watching NDN’s Waist: How Simplicity Creates Innovation
and Opportunity. keynote talk at NSF/Intel ICN-WEN Anuual Workshop, Santa
Clara, CA. http://pollere.net/talks.html

[20] H. Khelifi, S. Luo, B. Nour, H. Moungla, Y. Faheem, R. Hussain, and A. Ksentini.
2019. Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art
and Challenges. IEEE Communications Surveys Tutorials (2019), 1–1. https:
//doi.org/10.1109/COMST.2019.2894816

[21] Michael Mitzenmacher and Rasmus Pagh. 2018. Simple multi-party set reconcili-
ation. Distributed Computing 31, 6 (2018), 441–453.

[22] Ilya Moiseenko, LijingWang, and Lixia Zhang. 2015. Consumer/producer commu-
nication with application level framing in named data networking. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. ACM, 99–108.

[23] Department of Energy. [n.d.]. Project Profile: Operant Solar (T2M3). https:
//www.energy.gov/eere/solar/project-profile-operant-solar-t2m3

[24] A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and
Brian Neil Levine. 2017. Graphene: A New Protocol for Block Propagation
Using Set Reconciliation. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology - ESORICS 2017 International Workshops, DPM 2017 and
CBT 2017, Oslo, Norway, September 14-15, 2017, Proceedings (Lecture Notes in
Computer Science), Joaquín García-Alfaro, Guillermo Navarro-Arribas, Hannes
Hartenstein, and Jordi Herrera-Joancomartí (Eds.), Vol. 10436. Springer, 420–428.
https://doi.org/10.1007/978-3-319-67816-0_24

[25] A. Pinar Ozisik, Gavin Andresen, Brian Neil Levine, Darren Tapp, George Bissias,
and Sunny Katkuri. 2019. Graphene: efficient interactive set reconciliation applied
to blockchain propagation. In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM 2019, Beijing, China, August 19-23, 2019, Jianping
Wu and Wendy Hall (Eds.). ACM, 303–317. https://doi.org/10.1145/3341302.
3342082

[26] Davide Pesavento, Omar Ilias El Mimouni, Eric Newberry, Lotfi Benmohamed,
and Abdella Battou. 2017. A network measurement framework for named data
networks. In Proceedings of the 4th ACM Conference on Information-Centric Net-
working, ICN 2017, Berlin, Germany, September 26-28, 2017. 200–201.

[27] Lei Pi and Lan Wang. 2018. Secure bootstrapping and access control in NDN-
based smart home systems. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA, April
15-19, 2018. 1–2.

[28] Lei Pi and Lan Wang. 2018. Secure bootstrapping and access control in NDN-
based smart home systems. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA, April
15-19, 2018. IEEE, 1–2.

[29] NDN project. [n.d.]. Validation Configuration File Format. https://named-
data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html

[30] Samsung. 2016. Samsung Announces Commercially Available IoT Cloud
Platform to Deliver Interoperability Between Devices and Applications.

https://news.samsung.com/us/samsung-announces-commercially-available-
iot-cloud-platform\protect\discretionary{\char\hyphenchar\font}{}{}deliver-
interoperability-devices-applications/

[31] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexander
Afanasyev, Jeff Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang. 2016.
Named data networking of things. In 2016 IEEE first international conference on
internet-of-things design and implementation (IoTDI). IEEE, 117–128.

[32] Wentao Shang, Qiuhan Ding, Alessandro Marianantoni, Jeff Burke, and Lixia
Zhang. 2014. Securing building management systems using named data network-
ing. IEEE Network 28, 3 (2014), 50–56.

[33] Wentao Shang, Zhehao Wang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang.
2017. Breaking out of the Cloud: Local Trust Management and Rendezvous in
Named Data Networking of Things. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, IoTDI 2017, Pittsburgh,
PA, USA, April 18-21, 2017. 3–13.

[34] Lan Wang, Vince Lehman, A. K. M. Mahmudul Hoque, Beichuan Zhang, Yingdi
Yu, and Lixia Zhang. 2018. A Secure Link State Routing Protocol for NDN. IEEE
Access 6 (2018), 10470–10482.

[35] et. al. Wentao Shang. 2017. A Survey of Distributed Dataset Synchroniza-
tion in Named Data Networking. Named Data Networking Technical Reports
https://named-data.net/publications/techreports/ (May 2017).

[36] Yingdi Yu, Alexander Afanasyev, David D. Clark, kc claffy, Van Jacobson, and
Lixia Zhang. 2015. Schematizing Trust in Named Data Networking. In Proceedings
of the 2nd International Conference on Information-Centric Networking, ICN ’15,
San Francisco, California, USA, September 30 - October 2, 2015. 177–186.

[37] Yingdi Yu, A Afanasyev, Z Zhu, and L Zhang. 2014. Ndn technical memo: Naming
conventions. NDN, NDN Memo, Technical Report NDN-0023 (2014).

[38] Haitao Zhang, Yanbiao Li, Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang.
2018. NDN host model. ACM SIGCOMM Computer Communication Review 48, 3
(2018), 35–41.

[39] Jianqing Zhang, Qinghua Li, and Eve M Schooler. 2012. iHEMS: An information-
centric approach to secure home energy management. In 2012 IEEE Third In-
ternational Conference on Smart Grid Communications (SmartGridComm). IEEE,
217–222.

[40] Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable name-based
data synchronization for named data networking. In 2017 IEEE Conference on
Computer Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017.
1–9.

[41] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(2018), 62–68.

https://community.home-assistant.io/t/smarter-smartthings-with-mqtt-and-home-assistant/42493
https://community.home-assistant.io/t/smarter-smartthings-with-mqtt-and-home-assistant/42493
https://www.researchgate.net/publication/237100885_Quality_of_Service_in_PublishSubscribe_Middleware
https://www.researchgate.net/publication/237100885_Quality_of_Service_in_PublishSubscribe_Middleware
https://www.darpa.mil/program/secure-handhelds-on-assured-resilient-networks-at-the- tactical-edge
https://www.darpa.mil/program/secure-handhelds-on-assured-resilient-networks-at-the- tactical-edge
http://arxiv.org/abs/1902.04023
https://www.sbir.gov/sbirsearch/detail/1523933
https://www.sbir.gov/sbirsearch/detail/1523933
http://pollere.net/talks.html
https://doi.org/10.1109/COMST.2019.2894816
https://doi.org/10.1109/COMST.2019.2894816
https://www.energy.gov/eere/solar/project-profile-operant-solar-t2m3
https://www.energy.gov/eere/solar/project-profile-operant-solar-t2m3
https://doi.org/10.1007/978-3-319-67816-0_24
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
https://news.samsung.com/us/samsung-announces-commercially-available-iot-cloud-platform\protect \discretionary {\char \hyphenchar \font }{}{}deliver-interoperability-devices-applications/
https://news.samsung.com/us/samsung-announces-commercially-available-iot-cloud-platform\protect \discretionary {\char \hyphenchar \font }{}{}deliver-interoperability-devices-applications/
https://news.samsung.com/us/samsung-announces-commercially-available-iot-cloud-platform\protect \discretionary {\char \hyphenchar \font }{}{}deliver-interoperability-devices-applications/

	Abstract
	1 Introduction
	2 The DNMP Framework
	2.1 Basic Operation
	2.2 Identities and Publications
	2.3 Client and NOD Shim UseThis section describes the approach of the POC; the in-progress version is additionally streamlined by with c++ Promises and a more capable shim.
	2.4 Publication Names and Signing Keys
	2.5 Example: a command reaches many NODs

	3 Enablers: syncps, shims, and schema
	3.1 Lightweight publish-subscribe protocol, syncps
	3.2 Shims customize transport
	3.3 Versatile security simplifies shim

	4 Implementation Status
	5 Status and Future Work
	6 Conclusion
	Acknowledgments
	References

