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Abstract—Configuring a network is a tedious and error-prone
task. In particular, configuring routing policies for a network is
complex as it involves subtle dependencies in multiple routers
across the network. Misconfigurations are common and certain
misconfigurations can bring the Internet down. In 2005, a
misconfigured router in AS 9121 blackholed traffic for tens of
thousands of networks in the Internet. This paper describes
NetPiler, a system that detects router misconfigurations. NetPiler
consists of a routing policy configuration model and a misconfig-
uration detection algorithm. The model is applicable to routing
policies configured on a single router as well as to network-wide
configuration. Using the model, NetPiler detects configuration
commands that do not influence the behavior of the network
- we call these configurations ineffective commands. Although
the ineffective commands could be benign, sometimes when the
commands are mistakenly configured to be ineffective, they cause
the network to misbehave deviating from the intended behavior.
We have implemented NetPiler in approximately 128,000 lines of
C++ code, and evaluated it on the configurations of four produc-
tion networks. NetPiler discovers nearly a hundred ineffective
commands. Some of these misconfigurations can result in loss of
connectivity, access to protected networks, and financial implica-
tions by providing free transit services. We believe NetPiler can
help networks to significantly reduce misconfigurations.

Index Terms—Network abstraction, network configuration
modeling, network management, static analysis.

I. INTRODUCTION

CONFIGURING a network is a low-level and device-
specific task. To configure a network, one needs to

configure each device in the network separately. There can
be hundreds of devices, thus hundreds of configuration files,
each with thousands of commands. A change in one device
can potentially affect other devices or even the whole network.
Often, multiple devices need to be reconfigured to make a
relatively minor change in the network. Network configuration
files are complex due to subtle dependencies among them.
These subtle dependencies exist in different parts of a single
file and spread across files of multiple devices, even for a
small sized network. For example, the network policy that
states, “allow a set of packets to go from router A to router
B”, requires configuration of the policy in A and B as well as
in all the routers in between. As a network evolves, the com-
plexity of its configuration also grows, and the configuration
becomes difficult to understand, extend, and debug. Patches
are sometimes put into configuration files during a crisis to
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temporarily deal with a problem. These patches are forgotten
and left in place after the pressure of the situation is lifted.
Old configurations that have been replaced are not deleted,
just in case the new ones are not completely debugged or to
ensure that the network continues to work if the transition
is incomplete. Personnel turnovers mean that configurations
are edited by multiple engineers with different backgrounds
and working styles. As a result of all these complications,
network policies end up being configured incompletely or they
contradict one another. Faulty configurations are prevalent and
can lead to more than 50% of failures in computer networks
and distributed systems [1]–[3]. Some of the errors can
have dramatic impacts such as introducing network security
vulnerabilities or leading to global connectivity disruptions.
For example, misconfigurations in AS (Autonomous System)
9121 resulted in the incorrect propagation of 100K+ routes,
leading to ”misdirected or lost traffic for tens of thousands of
networks” [4].

The complexity of a network’s configuration can be com-
pounded by ineffective configuration commands. A command
is ineffective if its removal does not change the behavior
of the network (e.g., a command that is never executed, or
a command whose condition is always set to be false). In
[5], we show that ineffective commands comprise more than
30% of the routing policy configurations in four production
networks. Ineffective commands have generally been believed
to be benign. Some ineffective commands are obsolete and
others may be left on purpose for future use. However, we
show that certain types of ineffective commands are due to
operator errors leading to unexpected network behavior. Due
to these errors, the behavior of the network differs from the
operator’s original intention. Some of these errors require
prompt corrections of the configuration (e.g., filters that leak
private addresses outside of the network or filters that remove
intended routes).

Fig. 1 illustrates an example of ineffective BGP (Border
Gateway Protocol) route filters. The line between two routers,
R1 and R2, represents a BGP session. The rounded rectangles,
F1 and F2, are route filters. The arrow in a route filter denotes
the direction where the route filter is applied. F1 is applied
to R1 for routes leaving from R1 towards R2. F2 is applied
to R2 for routes arriving at R2 from R1. Each route filter has
its actual commands in a rectangle connected with a dashed
line. The filter has a structure similar to that of the if-then-
else chain in a programming language. When a route arrives
at the route filter, the route filter compares the route with the
if-clauses sequentially. If the route matches an if-clause, the
route takes the respective action, “permit” or “deny”, and the
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R1 R2

c1.1: if (prefix⊂10.10.1.0/24), permit

F2F1

c1.2: if (prefix⊂10.10.1.0/30), deny

c2.1: if (prefix⊂10.10.2.0/24), permit

Fig. 1. A simple example configuration of inter-domain routing. A line
between two routers means that there exists a BGP session between the two
routers.

subsequent if-clauses are not evaluated. At the end of the if-
then-else chain, there is an implicit “deny” action. In Fig. 1,
the first entry c1.1 says that F1 allows any route within the
prefix 10.10.1.0/24. The next entry c1.2 is intended to filter
out the routes to the protected network 10.10.1.0/30. However,
c1.2 is ineffective: the if-clause in c1.1 allows 10.10.1.0/30,
so no route matches the condition in c1.2. For c1.2 to be
effective, c1.2 needs to precede c1.1. A command can also
be ineffective because of a command in another route filter.
For example, F1 does not allow any routes that c2.1 matches,
causing c2.1 to become ineffective. This indicates inconsistent
policy configurations at the two ends of the BGP session. In
more complex cases, multiple policies contradict one another
and the commands in a series of route filters cause a command
to be ineffective.

Some ineffective configuration commands are actually le-
gitimate. For example, it is common practice that the same
commands are configured at multiple places, sometimes in
different routers, to increase robustness in the network. To
separate these legitimate ineffective commands from possible
errors, we focus on two types of ineffective commands that are
likely errors, out of all possible types of ineffective commands.

Our system, called NetPiler, detects ineffective commands
in routing policy configurations. Routing policy configurations
are one of the largest, highest impact, and the most complex
parts of a network’s configuration [6], [7]. NetPiler models the
routing policy configuration as a program flow graph (Section
III). This graph represents the set of operations that are
executed in route filters and the order in which the operations
are executed. It also represents the way a route propagates
through the route filters in the network. Using this graph,
NetPiler identifies two types of ineffective commands that are
likely caused by operator errors (Section IV). The first type
is always-false predicates, which do not match any routes.
In Fig. 1, the if-clause in c2.1 is an always-false predicate.
The second type is unreachable commands, which are never
executed. In Fig. 1, the action “deny” in c1.2 is unreachable.
The program flow graph can also be used to do ”what-if
scenario” testing for pending changes to configuration. We
have implemented NetPiler and evaluated it on configurations
from four production networks - a tier-1 nation-wide provider,
two regional providers, and one university network (Section
V). We show that NetPiler is powerful in detecting miscon-
figurations. It is able to detect a number of errors that are
confirmed by the network operators. Throughout the paper,
we use the symbols listed in Table I.

TABLE I
DESCRIPTION OF SYMBOLS

Symbol Description

Rx Router
Fx Route filter

Fx(i), Fx(o) The input and output components of Fx, respectively.
Cx If-then-else chain

cx, cx.y Component
Sx Route set

x:y BGP community

II. RELATED WORK

Most of the previous work on the verification of a network
configuration is based on a predefined rule set. [8] detects
syntax errors within a router (e.g., undefined references) or
between two end points of a protocol session (e.g., two
end points of a link that participate in OSPF should be
configured to have the same area.). rcc [9] uses a collection
of network-wide policies, which are considered to be the best
common practices (e.g., the internal BGP sessions should
form a full mesh.). NetPiler complements these previous
approaches. The errors NetPiler finds would be overlooked
by these configuration checkers. The detection of ineffective
components requires an accurate representation of route sets
on each different route filter in the network. It also requires
modification of the route sets as they propagate through the
filters. FIREMAN [10] applies a flow analysis for distributed
firewalls. Although their approach is similar to that of NetPiler,
what constitutes an error in a firewall is different from the
errors in a routing policy configuration. Also, the models
for routing policies differ significantly from the models for
firewalls. NetPiler models routing policies according to the
routing protocol behaviors. Lastly, route filters frequently
modify the attributes in a route (e.g., BGP community, AS-
path, local preference, and next hop) in addition to taking two
typical actions in firewalls, “permit” and “deny”. This adds
complexity to the analysis.

Configurations are decomposed across routers and are
specified in low-level device-specific languages. These are
identified as some of the major reasons that complicate the
network configuration [9]. The 4D [11], RCP [12], and Ethane
[13] thus propose to have a central point of decision where
network-wide goals are specified by a high-level language.
Although operators in these systems specify configurations in
one place, there are still multiple policies to manage. Also, the
operators need to learn new configuration languages and can
make mistakes in high-level specifications. It may take several
years before a new architecture and configuration languages
become widely deployed and accepted. Our focus is to tackle
the configuration problems associated with deployed legacy
networks. Nonetheless, the idea of NetPiler can be applied
to detect ineffective configurations in high-level specifications
and to analyze the interactions among different policies.
Finally, there is still ongoing research on how to map complex
and various high-level objectives (e.g., Quality-of-Service and
traffic engineering goals) to individual device configurations.
The current high-level languages either specify a particular
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aspect of a network configuration (e.g., Metarouting [14] spec-
ifies routing protocols), require the description of many low-
level details (e.g., RPSL [15]), or translate simple objectives
(e.g., “allow desktop group to access the server group via the
proxy” in Ethane [13]).

III. MODELING ROUTE FILTERS

Our routing policy model is comprised of three different
parts: models of a single route filter; models of route filters
in a network of routers; and models of external and internal
routing entities.

A. Models of a Single Route Filter

A single route filter represents a routing policy that is
implemented on a single router. It denotes a unit of policy
as perceived by a network operator. Route filter definitions in
most vendors fit the single if-then-else chain model (Section
III-A1). Some vendors use the multiple chain model (Section
III-A2).

1) Single if-then-else Chain Model: We begin with a brief
overview of inter-domain routing and its configuration. Inter-
domain routing exchanges reachability information among
ASes. BGP [16] is the de facto standard inter-domain routing
protocol. Routing policies specify the routes a router or a
network accepts, filters, and forwards. A routing policy is
implemented by applying route filters to BGP sessions. For
example, to prevent a network from providing free transit for
its settlement-free peers, one can apply a route filter on BGP
sessions with each of the network’s providers so that the routes
from the peers are not advertised to the providers.

Although each router vendor has its own configuration
language, a route filter in most major vendors (e.g., Cisco,
Juniper, Avici, Quagga) can be modeled as an if-then-else
chain. An if-clause describes the routes to which the policy
is applied, in terms of the attributes of the routes. A then-
clause specifies the actions on the routes such as “permit” and
“deny”, along with commands that manipulate the attributes of
the routes. These attributes include the AS-path and the BGP
community. The AS-path attribute contains a list of ASes that
the route has traversed. The AS-path is used to prevent routing
loops and to implement routing policies. For example, a route
is not preferred if the route goes through an AS that is known
to have longer delays than other ASes. A BGP community
[17] refers to a group of routes with a common announcement
profile. It is one of the most widely used attributes. A 32-bit
value is tagged onto the routes that belong to the community.

Our model for a single route filter is an acyclic directed
graph. A vertex in this graph represents a command in the
filter. We call a vertex in this graph a component. A directed
edge in this graph represents the flow of control along the
components in the if-then-else chain. The model has a single
entry component input and a single exit component output.
The input component connects to the output component via
two types of components: a conditional component (i.e. a
predicate) or an action component. The input component is
adjacent to the head component of the chain, the component
that is evaluated first in the chain. The output component is
adjacent from all the action components that are a “permit”.

Conditional component: There is one conditional com-
ponent for each prefix or route attribute (e.g., AS-path,
community) in an if-clause. For example, an if-clause “if
(community 100:1 exists) or (community 100:2 exists)” is
decomposed into two conditional components, “if (community
100:1 exists)” and “if (community 100:2 exists)”. This
decomposition accurately pinpoints the location of ineffective
components. For example, if there is no decomposition (i.e.,
if a component represents both of the two communities) and
one of the two communities is ineffective, we then can detect
that the component is ineffective as a whole, but we cannot
identify which one of the two communities is ineffective.
The conditional component has two outgoing edges, the true
branch and the false branch.

Action component: Unlike a conditional component, an
action component includes all the actions defined in the same
then-clause. We do not decompose an action component as we
currently do not examine the effectiveness of each individual
action. An action component has no outgoing edge, if its action
is a “deny”. If its action is a “permit”, the action component
has a single outgoing edge to the output component. At the
end of the chain, there is an implicit default action. This
default action is either a “permit” or a “deny” and differs
from vendor to vendor. It is adjacent from the false branches
of the conditional components that are evaluated last in the
if-then-else chain.

Fig. 2 illustrates an example of an if-then-else chain in the
single route filter model. Each rectangle represents either a
conditional or an action component. We append a unique id,
c*, to each component. The true branch and the false branch of
a conditional component are denoted by a solid line with T and
a dotted line with F, respectively. Components c3.1 and c3.2
drop a route if its AS-path matches the regular expression 777$
(i.e., if the route originates from AS777). Components c3.3
through c3.5 permit a route if its destination prefix is within
10.10.0.0/16 but not within 10.10.1.0/24. (The symbol ¬ in
c3.3 negates the condition.) All the other routes are dropped
by the default “deny” action, c3.6. Fig. 3 shows the actual
configuration commands used to configure the route filter in
Fig. 2.

2) Multiple if-then-else Chain Model: In addition to the
single if-then-else chain, the Juniper and new Cisco (IOS-XR)
configuration languages allow multiple if-then-else chains to
be applied in tandem. Besides the actions of “permit” and
“deny”, JUNOS also has a few other actions to redirect the
control flow in the if-then-else chains. The keyword “next
term” continues to evaluate the following if-then clause. The
keyword “next policy” jumps to the subsequent if-then-else
chain. The language can also call (or “apply”) another if-
then-else chain within an if-then-else chain. When no match
is found in the callee if-then-else chain, the control returns
to the caller if-then-else chain. These features improve the
modularity of the configuration as we can reuse common
components in multiple route filters. In Fig. 4, we show an
example of this multiple chain model. The filter applies two
if-then-else chains in series, C4 and C5. Another chain C6 is
applied in C4. The components in the same if-then-else chain
are enclosed in the same rounded rectangle. To emphasize the
functions of the three new actions, we omit the details of the
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Fig. 2. An example of a route filter model.

01 neighbor 3.3.3.3 remote-as 3
02 neighbor 3.3.3.3 route-map from_as_3 in
03 route-map from_as_3 deny 10
04 match as-path 55
05 !
06 route-map from_as_22 permit 20
07 match ip address prefix-list 6
08 set community 100:3
09 !
10 ip as-path access-list 55 permit 777$
11 ip prefix-list 6 deny 10.10.1.0/24
12 ip prefix-list 6 permit 10.10.0.0/16

Fig. 3. Configuration commands used to configure the filter in Fig. 2 and
to apply the filter to an external neighbor in AS3.

conditional components. We assume that the implicit default
action at the end of the chains is a “deny”.

B. Models of Route Filters in a Network of Routers

At a high level, our model of route filters in a network
represents the way routes flow through route filters in the
network. In our model, a route filter Fx connects to another
route filter Fy if Fx’s output can be re-advertised to the router
where Fy is applied. To know how routes are re-advertised,
we need to consider the BGP session-level topology as well
as the rules that BGP follows to re-advertise its best route.

BGP session-level topology: BGP exchanges reachabil-
ity information through a BGP session that runs over TCP
between routers. A BGP session is called an external BGP
session (eBGP) if the session is between routers in different
ASes. A BGP session between routers in the same AS is called
an internal BGP session (iBGP). Through iBGP, routers within
the same AS share routing information that they receive over
eBGP. A full mesh is created when there are iBGP sessions
between every pair of routers within an AS. Although a full
mesh is commonly used with small ASes, this approach does
not scale as the number of router increases. One solution,
called route reflector, divides the routers in an AS into a two-
level hierarchy. Routers of the top-level are route reflectors
and they form iBGP sessions with one another. Routers of the
bottom-level are clients and each client forms an iBGP session
with a single route reflector. Then, a full mesh is created only
among the route reflectors.

input

output

T
F

c4.1: if …

c5.3: implicit default action - deny

c4.2: set 100:1, next term

c4.3: if …

c4.5: if …

c4.7: if …

c4.4: next policy

c4.6: apply C6

c4.8: deny

c6.1: if … c6.2: permit

c5.1: if … c5.2: permit

C4

C5

C6

T

T

T

T

T

F

F

F

F

F

Fig. 4. An example of a route filter with multiple if-then-else chains.

Rules to re-advertise the best route: When a router selects
the best route toward a destination, the best route is re-
advertised according to the following rules. Rule(1): if the best
route is learned from an eBGP session or from a client iBGP
session, the route is re-advertised on all other BGP sessions
in the router. Rule(2): if the best route is learned from a non-
client iBGP session, the route is re-advertised on the client
iBGP sessions and the eBGP sessions, but the route is not
re-advertised to the other non-client iBGP sessions [16], [18].
In both rules, the best route is not re-advertised to the sender
of the route to prevent routing loops.

1) Creating a Model of Route Filters in a Network of
Routers: Our model of route filters in a network has an
inbound filter and an outbound filter on every BGP session
configured on a router. These filters represent the import policy
and the export policy applied to the BGP session, respec-
tively. If no filter is configured, the corresponding component
in the model has a single action, a “permit”. This default
behavior allows every route. Route filters are linked to one
another according to the BGP session-level topology and re-
advertisement patterns as described above. Let F(i) and F(o)
denote the input and output components of route filter F,
respectively.

Connection of filters in the same router: Let Fx denote
an inbound filter in router R. Fx is on a BGP session with
neighbor Rx. Let Fy denote an outbound filter in the same
router R. Fy is on a BGP session with neighbor Ry. The model
has a directed edge (Fx(o), Fy(i)) if the best route learned
from Rx is re-advertised to Ry according to rules (1) and (2)
in Section III-B.

Connection of filters in different routers in the same
network: Let router Rx have an iBGP session with router Ry.
Rx has an outbound filter Fx on the session. Ry has an inbound
filter Fy on the session. Then, the model has a directed edge
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(a)

(b)

Fig. 5. An example network (a) and its corresponding model for router R20
(b). Note that the model in (b) does not include the external and internal
routing entities.

(Fx(o), Fy(i)).
Fig. 5(a) illustrates an example network. R20 is the route

reflector of its client R40. R20 has non-client iBGP sessions
with R10 and R30. Fig. 5(b) shows the corresponding model
for router R20. For simplicity, we do not show the components
within individual route filters. According to rule (1), F26 is
adjacent to all other outbound filters in R20. According to rule
(2), F22 and F23 are not adjacent to each other, but they are
adjacent to F25. Note that in order to complete this model, we
need to add the model of external and internal routing entities,
as described in the next section.

C. Models of External and Internal Routing Entities

Routes are injected into the BGP process of a router
externally as well as internally. The BGP process can also
re-advertise its routes to external neighbors or other internal
routing processes. In this section, we include these external
and internal routing entities in our model.

Models of an external neighbor: Let router R in our AS
have a BGP session with an external neighbor. Similar to
an iBGP session, the model has an inbound filter Fx and an
outbound filter Fy on this eBGP session. According to Rule
(1), Fx is adjacent to all the outbound filters in the same router,
except Fy. Fy is adjacent from all the inbound filters in the
same router, except Fx. The external neighbor is modeled as
two components: 1) a component that represents an entity that
injects its routes into R and is adjacent to Fx(i); 2) a component
that represents an entity that receives routes advertised from
R and is adjacent from Fy(o). The two separate components
indicate that the external neighbor will not re-advertise a route
back to the sender of the route.

Models of an internal routing entity: We model other
routing processes and static routes in the same manner as we

model an external neighbor (i.e. as if the router has an eBGP
session with each of these internal entities.). The model has an
inbound filter and an outbound filter on each of these sessions.
Each entity is represented by two separate components. The in-
bound and outbound filters limit the redistribution of the routes
both from and to these routing entities. If no redistribution is
configured, the filter consists of a single action, a “deny”. The
inbound filter typically adds BGP communities to the routes.
These communities indicate the origin of the routes. NetPiler
detects the ineffectiveness of these filters. These filters connect
with the other filters in the same manner as a filter on an
eBGP session is connected. The only exception is that the
filters on an internal routing entity do not connect with the
filters on another internal routing entity. We do not model
the interactions among these internal routing entities (e.g., the
route redistribution between the OSPF process and the RIP
process).

Fig. 6 illustrates an example of external and internal routing
entities. There are two internal routers, R60 and R70. Both R60
and R70 have an eBGP neighbor, R50 and R80, respectively.
Static routes are configured in R60. The outbound filter to the
static routes, F65, is a placeholder and is not used. Static
routes are only injected into a routing process but do not
receive any routes. Note that this completed model is an
acyclic directed graph. A loop in the model means a potential
routing loop. NetPiler reports any loops found in the model.

IV. DETECTION OF INEFFECTIVE COMPONENTS

Given the model of route filters, we annotate each edge
in the model with the set of all the routes that can appear
on the edge. On an edge between two route filters, this set
represents all the routes that can be advertised from one filter
to the other. On an edge between two components within
a route filter, this set represents all the routes that can be
evaluated against the conditions in the components or the
routes that can take actions as specified in the components.
Although only a subset of these routes can appear on the edge
at one time, we consider the entire set of routes in order to
identify the components that are ineffective in any possible
state of the network. This process of annotating the edges
is defined as range propagation since we annotate the edges
with the range of routes as if the routes propagate through
the network. During the range propagation, we identify two
types of ineffective components: unreachable components and
always-false predicates. An unreachable component has an
empty input route set (i.e. its incoming edge is annotated
with an empty set). The control never reaches the component.
An always-false predicate is a conditional component that has
an empty output route set to its true branch - the predicate
does not match any input. We describe these methods of
detection in Section IV-A. In Section IV-B, we explain how
we represent the route set. The correct representation of the
route set determines the accuracy of the detection.

A. Methods of Detection

A route entering a network either originates from a router
in the network or is received from an external network. The
route is then re-advertised to other routers in the same network
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Fig. 6. An example of a model of route filters in a network. Routers R60 and R70 are internal routers. Each of R60 and R70 has an eBGP session with the
external neighbors R50 and R80, respectively. Static routes are configured in R60.

or to other external networks. The range propagation describes
this journey of the route. It begins by the injection of external
routes as well as internal routes into the network (Section
IV-A1). As we propagate these routes in each route filter
across the network (Section IV-A2), the routes propagate
through each component in the filter (Section IV-A3). While
we propagate the routes, we update the edges with the range
of the routes. We also detect ineffective components at the
same time (Section IV-A4).

1) Injection of Routes from External and Internal Routing
Entities: Each external and internal routing entity cx has
a set of routes Sx which cx injects into the network. We
annotate each outgoing edge of cx with Sx. We determine
Sx as follows. i) If cx is a static routing entity, Sx is clearly
defined in the configuration. ii) If cx represents an external
neighbor or an internal routing process, unless we know the
exact properties of Sx (or unless we want to test a particular
scenario where a certain set of routes is injected), we do
not make any assumption about these properties except about
those we know for certain, such as the last AS that the route
has traversed (e.g., the last AS in the AS-path in the route
from the external AS3 is 3.). We may miss some of the
misconfigurations because we do not know the exact properties
in advance, but we do not falsely classify a component as a
misconfiguration (i.e. there is no false positive.).

2) Range Propagation across Route Filters in a Network of
Routers: The algorithm for the range propagation is presented
in Fig. 7. The range propagation is done one filter at a time. A
filter Fx is ready for the range propagation if every incoming
edge of Fx is annotated with the range of routes. A queue
Q holds the filters that are ready for the range propagation.
Before the algorithm begins, Q initially has all the filters
that are adjacent from an external or internal routing entity.
These filters are ready for the range propagation since their
incoming edges are annotated as the result of the process in
Section IV-A1. The while-loop pops each filter Fx from Q and
propagates the range of routes within Fx. We describe how this
is done in Section IV-A3. The input Fx.input to Fx (i.e. the
range of routes that propagate into Fx) is the union of all the
ranges of routes annotated on the incoming edges of Fx. As a

M, E(M): the network model and its edge set.
Q: the queue of the filters to propagate the range. Q initially has all the filters adjacent
from an external or internal routing entity.
Fx: the xth filter in M .
Fx.num incoming edges: the indegree of Fx.
Fx.num annotated incoming edges: # incoming edges annotated with the range
of routes. It is initialized to 0.
Fx(i), Fx(o): input and output components of Fx, respectively.
Fx.input: the input to Fx (i.e. the range of routes that propagate into Fx).
Fx.ouput: the output of Fx (i.e. a subset of routes in Fx.input that Fx permits).

00 range propagation across the network () {
01 while (|Q| > 0) {
02 Fx = Q.pop()

03 Fx.range propagation within the filter()

04 for each Fy s.t. (Fx(o), Fy(i)) ∈ E(M)

05 Fy.input=Fy.input ∪ Fx.output

06 if (Fy.num incoming edges=++Fy.num annotated incoming edges)

07 Q=Q ∪ Fy

08 }
09 }

Fig. 7. Algorithm for range propagation across a network.

result of the range propagation within Fx, Fx has the output
Fx.output, which is the subset of the routes in Fx.input that
Fx permits. We then annotate every outgoing edge e of Fx
with Fx.output. During this annotation, if e = (Fx, Fy) (i.e.,
if e is incident with a filter Fy (y �= x) and not incident with
an external/internal routing entity) and if Fy is ready for the
range propagation, we insert Fy into Q. The loop finishes
when Q is empty. Since the model is acyclic and connected,
every filter propagates the range of routes once. Thus, the
running time of the algorithm is linearly proportional to the
number of filters in the model.

Table II presents each iteration of the while-loop for the
model in Fig. 6. The bold-faced filters represent the ones that
are ready for the range propagation and are inserted into Q in
the iteration. Before the while-loop starts (i.e. #iteration=0),
the outgoing edges from the external and internal routing
entities, c52, c68, c81, are annotated, and their adjacent filters
F62, F66, F73 are inserted into Q. At each iteration, the
loop pops a filter Fx from Q, propagates the range within
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TABLE II
ILLUSTRATION OF THE APPLICATION OF THE ALGORITHM IN FIG. 7 ON

THE MODEL IN FIG. 6

Filter Fi that
# iterations

propagates
Annotated edges

Q
in while() loop

the range
in the iteration

0 (c52, F62) {F62, F66, F73}
(c68, F66)
(c81, F73)

1 F62 (F62, F65) {F66, F73}
(F62, F64)

2 F66 (F66, F61) {F73, F64}
(F66, F64)

3 F73 (F73, F71) {F64, F71}
4 F64 (F64, F72) {F71, F72}
5 F71 (F71, F63) {F72, F63}
6 F72 (F72, F74) {F63, F74}
7 F63 (F63, F61) {F74, F61, F65}

(F63, F65)

8 F74 (F74, c82) {F61, F65}
9 F61 (F61, c51) {F65}

10 (# filters in F65 (F65, c67) {}
the network)

Fx, and annotates the outgoing edges of Fx with the output
of the range propagation. If a filter Fy adjacent from Fx is
ready for the range propagation, Fy is inserted into Q. The
loop ends when every filter propagates the range.

3) Range Propagation in a Single Route Filter: Each
individual filter model is loop-free regardless of whether it
has a single if-then-else chain or multiple if-then-else chains.
Thus, we can use the same algorithm to propagate the range
through the components within the filter as we propagate the
range through the filters across a network. When the algorithm
calls range propagation within the filter() (line 03, Fig. 7),
we begin to propagate the range in the head component of the
filter. The incoming edge to the head component is annotated
with the input to the filter. Each of the other components is
inserted into queue q whenever all of its incoming edges are
annotated with the range. q contains all the components that
are ready for the range propagation. We pop each component
ci from q and propagate the range within ci. This propagation
annotates the outgoing edges of ci. We then examine the
effectiveness of ci according to the definitions in Section
IV-A4. The propagation in the filter ends when q is empty. As a
filter propagates the range only once, so does each component
in the filter. We propagate the range within the component ci

as follows.
Range propagation in a conditional component: A pred-

icate represents a collection of routes Sc that matches the
predicate. Let St and Sf refer to the ranges of routes annotated
on the true branch and the false branch of cx, respectively. Let
Si denote the union of all the ranges annotated on the incoming
edges of cx. Then, St = Sc ∩ Si, and Sf = Si − Sc.

Range propagation in an action component: If the action
is a “deny”, the propagation ends. If the action is a “permit”,
Si is modified according to the additional actions configured
to manipulate the attributes of the routes. The result of the

Fig. 8. An example of a route filter with two ineffective components. The
input to the route filter is a set of all the routes tagged with community 100:4.

modification is annotated on the single outgoing edge of
the component. The output of the filter is the union of all
these ranges annotated on the outgoing edges of the action
components.

4) Detection of Ineffective Components: A conditional
component cx is an always-false predicate if its St={}. An
action (or conditional) component cy is unreachable if its Si
={} (i.e. cy is unreachable if all the ranges in the incoming
edges are empty.). We present an example of these two types
of ineffective components in Fig. 8. The input to the filter
F8 is a set of routes with community 100:4. c8.3 is an
always-false predicate since c8.1 matches a superset of the
routes that c8.3 matches. The rest of the routes are matched
by c8.5, causing c8.7 to be unreachable. Note that c8.7 is
unreachable according to the input to F8, whereas c8.3 is
ineffective regardless of the input to F8. As the input depends
on the configuration in the other elements of the network, so
does the ineffectiveness of c8.7. The ineffectiveness of c8.3
is determined only by the configuration in F8. The strength
of NetPiler is that it examines the flow of routes throughout a
network, thereby allowing it to detect ineffective components
caused by other elements in the network as well as ineffective
components caused by the components within the same filter.

We do not flag one class of always-false predicates, called
generalization, that are most likely to be valid configurations
[10]. In the context of routing policy, generalization is typi-
cally used to act on a set of routes except its small subset.
For example, “if (prefix ⊂ prefix-list1), deny” followed
by “if (prefix ⊂ prefix-list2), permit” is a generalization,
if prefix-list1 matches 10.10.1.0/24, and prefix-list2

matches 10.10.1.0/24 or 10.10.2.0/24. The detection of a
generalization is straightforward, and the details can be found
in the technical report version of this paper [19]. The technical
report also lists the types of ineffective components that are
legitimate and thus not considered by NetPiler.

B. Representation of Route Sets

The range propagation and detection of ineffective com-
ponents require an accurate representation of route sets. A
conditional component performs set operations on these route
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sets. An action component modifies these sets. We also
evaluate whether these sets are empty in order to detect the
ineffectiveness of the component. We use a Binary Decision
Diagram (BDD) [20] to represent the route sets. A BDD
provides a compact representation of the set, and most of
the BDD libraries fully support the set operations and the
modifications of the set. Details on this representation can be
found in our technical report [19].

V. EVALUATION

We have implemented NePiler and evaluated it on the
configurations from four production networks. The charac-
teristics of the four networks are summarized in Table III.
Due to the proprietary information of these networks, we only
characterize the networks into small, medium, and large: a
small network has less than 10 routers; a medium network
has between 11 and 50 routers; and a large network has over
50 routers. In these networks, routing policy configurations
are a major portion, comprising up to 70% of the configura-
tions. The NetPiler implementation is written in C++ and has
approximately 128,000 lines of code. The total running time
is less than one minute in the university network, and less
than 5 minutes in a large provider network with thousands of
filters. The NetPiler code can be further optimized if faster
run time is desired. The algorithm is linearly proportional to
the number of components. The running time also depends on
the complexity of the commands that manipulates the route
set (e.g., the addition and deletion of communities, and the
modification of AS-path). For example, provider 2 adds and
deletes from 15 to 20 communities in an action component,
whereas provider 3 adds mostly one community.

For three networks, we analyze the daily snapshots over a
two-year period to study the order in which the ineffective
components are configured. This helps classifying the results
into absolute errors, possible errors, or benign components.
NetPiler detects ineffective components in the configurations
of 101 BGP sessions. Table IV summarizes the results. More
than half of these sessions are likely to contain errors and
28 sessions are confirmed to have operator errors. Some
of these ineffective components represent critical errors that
allow private addresses to be advertised externally and errors
that filter out intended routes.

A. Error Classification and Count

The detected errors are classified into absolute errors,
possible errors, or benign components, denoted by AE, PE,
and B in Table IV, respectively. Absolute errors are divided
into two categories: i) ineffective components confirmed by
the operators as errors, and ii) ineffective components that
we are certain of their misconfigurations. Possible errors are
ineffective components that are not verified by the operators
but are likely to be errors. The operators are usually limited
to their knowledge of the configurations at that time, and they
are not necessarily aware of entire history of configuration
changes. For this type of error, we provide more explanations
about errors. Benign components are ineffective components
that are detected by NetPiler but which do not have any neg-
ative impact on the network. However, some of these benign

Fig. 9. Ineffective components caused by a tandem of remote filters.

components can complicate the configuration and confuse the
operator if not corrected in a timely manner.

We count the number of BGP sessions that contain each
type of error, as the number of sessions represents the impact
of the errors. We do not count each individual ineffective
component since multiple ineffective components can signal
the same error (e.g., one unreachable component causes all
the subsequent components in the same if-then-else chain to
be unreachable). Also, we do not report the numbers for each
network that we tested to protect the proprietary information
of these networks.

B. Results

In this section, we describe each type of ineffective compo-
nents that NetPiler detected, in the order they appear in Table
IV.

1) Absolute and Possible Errors Caused by Multiple Filters
in a Network:

Ineffective components caused by a series of remote
route filters: Fig. 9 illustrates a case of a series of route
filters causing a route filter to be ineffective. For simplicity,
we present an if-then clause in one single component. A
route reflector, R100, advertises a certain set of routes S201

to its client, R200, via c102.1. This set is with communities
100:91 or 100:101. These communities are attached to the
routes from AS91 and AS101, respectively. The routes in S201

are supposed to be re-advertised to AS201 via c201.1 and
c201.2. However, c201.1 and c201.2 do not match any routes
in S201 and become ineffective since these two components
match routes only from AS300 and AS301. The operator
confirmed that c201.1 and c201.2 are misconfigurations. The
misconfigurations are not immediately visible since there is
another session to AS201 at a different router. However, if
this other session fails, the destinations corresponding to S201

will become unreachable from AS201.
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TABLE III
SUMMARY OF DATASET AND PERFORMANCE CHARACTERISTICS

Elapsed Timea

Network Size
# BGP sessions # filters,

Model Construction Range Propagation
per routerb # components

(written in C++) (written in C++)

Univ. 1 Large (3,3,7) (449,1286) Less than 00:01 Less than 00:01

Provider 1 Large (3,45,66) (3982,18407) 00:18 03:29

Provider 2 Small (11,22,25) (228,3378) 00:02 01:49

Provider 3 Medium (3,17,202) (1558,11688) 00:12 00:33

aElapsed Time in minutes:seconds. The times were observed when running the components on a machine with a CPU of 2.8 GHz and 2Gb of memory.
bThe three numbers under this column denote the 10th-percentile, median, and the 90th-percentile values, respectively.

TABLE IV
SUMMARY OF NETPILER RESULTS

Range of
Problem AEa PE B Possible Negative Impacts

the problem

Ineffective components 1 A peer loses connection to a set of

caused by multiple remote filters destinations upon a session failure.
Ineffective

Incorrect prefix lengths on 3 Prevent static routes from beingcomponents
static routes advertised to the network.

caused by multiple
Inconsistent policies on 8 Drop intended routes.

filters in a network
two ends of a session Overload routers.

Impossible Boolean conditions 6 Drop intended routes.

Double Negations 17 Leak internal routes.

Accept bogus routes.

Shadowing different actions 3 3 Drop intended routes.

Ineffective Shadowing the same action 40 Provide free transit to a peer.

components Typos in as-path definitions 1 Drop intended routes.

caused by Missing definitions 4

a single filter Repetition of 13 Can complicate the configurations.

identical components

Reuse of common components

Total 28 58 15

aAE, PE, and B denote ‘Absolute Error’, ‘Possible Error’, and ‘Benign Components’, respectively.

Minsconfigured prefix length: In one network, a set of
static routes Sx is defined and re-advertised to other networks
via filter Fx. In the definition of the static routes, the prefix
lengths of a few routes in set Sx are not configured. These
routes are thus assigned a default prefix length of 32, which
is different from their correct prefix lengths. The prefix lengths
are correctly configured in Fx. As a result, Sx do not match Fx,
causing the respective predicates in Fx to be ineffective. This
means that the static routes will not be re-advertised properly.

Inconsistent policies in tandem: Fig. 1 illustrates this case.
Two filters F1 and F2 applied at the two ends of a BGP
session permit different sets of routes, S1 and S2, respectively.
We observe two different situations: i) S1 ⊂ S2 and ii) S1
and S2 are not a subset of each other. In some cases of
i), S1={} (i.e. F1 drops every route). NetPiler reports the
always-false predicates in F2 that match the routes in S2−S1.
The operators are concerned about these inconsistent policies.
Some operators want to remove F2 in the case of i). R2

receives the same set of routes regardless of the application
of F2. This removal of F2 clarifies the configuration. It also
eliminates the need to evaluate the ineffective filter F2, which
adds to the computation load in R2.

Impossible Boolean conditions: In the inbound filters on
several eBGP sessions, an if-then clause matches routes with
the AS-path of length 0. This condition can never evaluate
to true. When an AS advertises a route externally, the AS
prepends its AS number in the AS-path of the route, and the
length of the AS-path becomes greater than 0. These compo-
nents may not be misconfigured but are simply deactivated.

2) Absolute and Possible Errors Caused by a Single Filter:

Double Negation: A bogon prefix-list is a list of IP
addresses that are private or that are not allocated. This list is
used to prevent those addresses from being advertised into the
network and also to the outside of the network. In one network,
a bogon-list bogon was used with an if-clause “if (prefix ⊂
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bogon), deny”. However, a wrong command “deny” is used
in the definition of bogon, “ip prefix-list bogon deny

10.0.0.0/8”, negating the condition. Consequently, the if-
clause leaks the private routes into external networks. NetPiler
detects the predicate as ineffective. This mistake comes from
the fact that two different commands are syntactically the
same. The keyword “deny” is used both in a command to
negate a predicate and the one that drops routes. The double
negation means that the routes are not denied. The same
mistake is found in another route filter that is supposed to
drop all the routes. Because of the mistake, the ineffective
filter allows every route.

Shadowing: Shadowing occurs when an if-then clause
matches a superset of the entire set of routes that the sub-
sequent if-then clause matches, shadowing the latter clause
[10]. The latter clause becomes ineffective. The two clauses
either have the same action or different actions. In Fig. 8,
c8.1 shadows c8.3. c8.3 should precede c8.1. We also find a
shadowing within an AS-path list (or a prefix list). An AS-
path shadows a subsequent AS-path as shown in the following
commands.

1 ip as-path access-list 77 permit _200_
2 ip as-path access-list 77 permit _232_
3 ip as-path access-list 77 permit _300_
4 ip as-path access-list 77 permit ˆ300$

The AS-path list is evaluated sequentially. The comparison
returns when the first match is found. The regular expression
‘_300_’ (i.e. 300 appears anywhere in the AS-path) in line
3 shadows ‘∧300$’ (i.e. 300 is the only AS in the AS-path,
indicating that the route is originated from 300.) in line 4.
When studying the daily snapshots of the configurations, we
find that only line 1 and 3 appear in the initial snapshot. We
also observe that line 2 and 4 are added together in a later
snapshot while only line 2 is effective. If line 4 is intended to
override line 3, the impact of this possible misconfiguration
is to advertise a larger set of routes ‘_300_’ to a peer and
provides a free transit to a number of destinations.

Typos and missing definitions: Another type of error
happens when there is a typo in an AS-path. In one case,
an if-then-else chain on an eBGP session permits a route
to the subsequent chains if the route matches an AS-path
‘∧400$’, which is unlike the convention in all the other
eBGP sessions in the same peer group, ‘∧400’ (i.e., 400 is
the first AS in the AS-path, meaning that the route is re-
advertised from AS400.). This allows only a small collection
of routes that originate from AS400. As a result, many of the
subsequent if-then-else chains become ineffective. The other
type of possible errors is missing definitions, which occurs
when an if-then clause matches a prefix list that does not
exist. Instead, a community list of the same name is defined.
Since the definition is missing, the if-then clause matches
every route, causing the subsequent if-then clauses to be
unreachable. Other configuration checkers can more efficiently
detect this type of error [8], [9].

3) Benign Components:
Identical predicates: Two equivalent community lists 99

and clist2 are used in an if-clause, “if (any community
in 99 exists) or (any community in clist2 exists)”. The

second predicate is ineffective. The network is in the process
of replacing the numbered community list 99 with the named
community list clist2. The former community list should
be removed in a timely manner as soon as the update is
complete. Otherwise, these obsolete configurations can impair
the readability of the configuration. We also observe cases
where one if-then clause is followed by a meaningless if-then
clause (e.g., two consecutive if-then clauses that deny every
route, or an if-then clause that denies every route followed
by one that permits no route.). These can also confuse the
operators and possibly lead to further configuration errors.
Therefore, we suggest removing the latter if-then clause.

Reuse of common components: The operators configure a
few if-then-else chains in tandem, knowing that a part of one
chain Cx can be made ineffective by a preceding chain. Cx is
simply reused rather than defining another chain that contains
no ineffective components.

VI. CONCLUSION

We propose NetPiler, a system that detects misconfigura-
tions in a routing policy configuration. As opposed to other
syntactic configuration checkers, NetPiler accurately models
the behavior of the configuration in a similar fashion to that of
a compiler in a programming language. The model represents
the way that routes flow and are processed across a network.
This model significantly expands the range of misconfigu-
rations that we can detect, from errors that require simple
syntactic analysis to errors that require complete semantic
evaluation. NetPiler evaluates the routing policies in four
production networks and it successfully detects a number of
serious misconfigurations quickly. One of the critical errors
is found in the route filters that block the announcement of
intended routes or ones that announce private addresses exter-
nally. Many of these configuration errors can be overlooked
by other configuration checkers. We believe that NetPiler can
be used for semantic verification of the configuration with
many possible requirements in addition to detecting ineffective
commands that we study in this paper.
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