
RED in a Different Light (Updates)

Van Jacobson
Kathleen Nichols
Kedarnath Poduri

This document supplements the 1999 draft with material added in Februrary 28, 2004 to fill in some TBAs
and provide more results on how we were looking at drops, delay, and other metrics. Most of the sections

that overlap with the 1999 version have been removed.

Abstract

Packet networks require queues (buffers) to absorb short term arrival rate fluctuations. Yet network

implementors have always observed that queues at bottlenecks tend to fill and stay filled, which con-

tributes excessive delay and removes the ability to absorb bursts. In [1] Floyd and Jacobson proposed

the RED (Random Early Detection) active queue management algorithm. RED is simple, robust and

quite effective at reducing persistent queues. However, while it has been used widely and successfully on

Internet routers, [1] offers little guidance on how to set configuration parameters and RED has gained

the reputation of being very difficult to tune.

This paper develops RED in different way, treating it as a servo control loop and deriving all the loop

parameters from measurable properties of a router. The result is a ‘self-tuning’ RED whose parameters

are completely determined by the queue output bandwidth (average departure rate). This new RED

performs substantially better than the original version and works for a much wider variety of traffic

and link bandwidths. It also admits a substantially simpler and more efficient implementation, one

particularly well suited for ASIC forwarding engines. Further, we believe our development explains the

reasons for some of the problems others have noted with configuring the 93 RED

1 Introduction
Although queues and buffers are essential to the efficient operation of packet networks, queues at a bottleneck
tend to fill up and remain full, adding unnecessary delay to traffic and losing the ability to absorb bursts.
The first author has been interested in solving this problem for some time, originally proposing a Random
Drop statistical congestion control algorithm in 1989 [13], a version of which was evaluated in [14] and
not considered to be compelling. Subsequently, this was refined into RED (Random Early Detection) [1],
considered one of the leading active queue managment candidates. The IRTF has urged the deployment of
active queue management in the Internet [2].

The paper defining RED was first published in 1993 and there have since been a number of implementa-
tions, variations, imitations, and reports on its use [4][5]. The 1993 paper describes active queue management
through randomly dropping (or marking)1 arriving packets when the average queue length indicates con-
gestion and makes a case for the efficacy of such an approach. Briefly, RED works by keeping a running
estimate (using an exponential weighted moving average or EWMA) of the average queue size. When that
size passes a lower threshold, the algorithm drops arriving packets randomly with a low probability. The drop
probability increases with increasing average queue size and all packets are dropped once the average queue
size reaches an upper threshold. The drop policy is based on the average, not instantaneous, occupancy thus
allowing queues to perform their primary task of absorbing bursts.

The other two authors got involved with RED work while working at the then Bay Architecture Lab. In
the course of answering some specific internal questions, we posed the general question “Shouldn’t there be

1[1] suggests that packets be “marked” by a queue management algorithm. Dropping a packet is the most severe form of
“marking” or indicating to an end-system that congestion is present. Although other types of marking may be used [ECN], we
have focused here on dropping and will use that terminology.

1



some simple way to set the parameters based on bandwidth?” and ended up scrutinizing the control law,
the sampling, and other aspects of RED and, in the process, starting a collaboration with Jacobson on this,
RED-light. Our early results were reported upon publicly in [3] in June, 1998 and in some internal Bay
Networks Architecture Lab reports the same year. In 1999, an early draft was made publicly available and
more internal reports were published at Cisco. Subsequent work has changed some of our early thinking and
there are several areas that could use more exploration. This paper is offered as an aid in understanding
how to look at the practical aspects of queue management.

Paul Baran invented much of the foundation of packet switching while at RAND in the early 1960’s.
(www.rand.org/publications/RM/baran.list.html). In RM-3638-PR (1964), a Communications Control Con-
sole (or Priority Control Console) is described. Baran explains how such a device would work in operation:

“since gross changes in loading are slowly occurring phenomena; rather, he will normally leave
the controls set to fixed positions, except when a crisis or overload approaches as indicated by
the red warning light. He then decides which users with growing demands should deprive others
with less important duties, and to what degree. “

[1] explains the general principles involved and gives simulation studies for a few traffic scenarios. However,
in 1993 the Web (http) traffic didn’t exist and a 1.5 Mb/s T1 was considered a high-speed WAN link. Since
none of the RED parameters were explained in terms of measurable network or transport properties (e.g.,
link bandwidth or round trip time), it has remained far from clear how to configure RED appropriately for
today’s wide range of bandwidth and traffic types. Tuning RED for any particular link remains a black art.

The literature on RED that has accumulated since 1993 has looked at performance of RED or alternatives
to RED under particular loads. We were driven by the desire to come up with a generalized RED with
parameters pegged to pipesize. It’s possible to tune our results for one kind of load or another, but they
give the best performance across a range of traffic loads.

This paper is an attempt to dispel some of the darkness. All the RED parameters are derived in
terms of fundamental, measurable, network properties, resulting in an entirely self-configuring RED. The
parameter derivations are validated via simulation and their sensitivity to mis-configuration and stochastic
variation is characterized. Finally, a new reference implementation for the RED algorithm is presented that
is substantially simpler and faster than existing published implementations.

The work described in this paper was started to dispel some of the confusion. RED parameters are derived
in terms of the link bandwidth. More work could be done but we demonstrate that this RED algorithm is
much more stable across traffic loads and is much more of a “controller”.

2 Input to the Controller
Figure 4 shows the network regulator monitoring queue size. Our input signal is a sample of the queue size
and the smoother needs to filter this signal so that the controller doesn’t respond too quickly or too slowly
to changes in the controlled value (queue size). There are a range of choices available for the queue sample
and for the smoothing algorithm. These are covered in this section.

2.1 Choosing an input signal
In [1], queue samples were taken with each arriving packet and an interpolation was used after idle periods.
Taking queue samples at packet arrivals has the advantage of “speeding up” the filter if arrivals come quickly,
but it also decouples the filter action from time and is not easily implemented on high-speed routers. When
the filter input is the queue value at each packet arrival, the filtered value will be recomputed at each packet
arrival, so that each arriving packet in a burst will result in a new filter computation. When the filter input is
time-based samples, a large burst that arrives within one sample time will be used as one data point into the
filter. A time-based sampler does not need to interpolate values when there are no packet arrivals (though
there may be departures). The RED implementation shipped with ns [] interpolates zero queue values if a
packet arrival finds an empty queue. This could introduce significant inaccuracy since the queue may not
have been empty all that time and because no interpolation is done unless the queue empties.

Although responding quickly to a large number of packet arrivals could be a useful characteristic of a
controller, the disadvantages outweigh any advantage. These include that fact that a large burst of packets

2



may be dissipated fairly quickly if there are no other arrivals or if packet sizes are small, but the filtered
value might still result in dropping the next arriving packet unless the queue has completely emptied.

Packet arrival sampling means an update with the addition of each packet. As a starting point, we
consider sampling at periods close to the time it takes to transmit a packet on the link. The sampling itself
introduces some smoothing or filtering of the queue occupancy. Look at packet arrivals and sampling for
two mixed traffic traces, one at T1, one at 10 Mbps. The RTT averages 100 ms.

0

2

4

6

8

10

12

14

38.4 38.5 38.6 38.7

p
a

ck
e
ts

time in seconds

arvls
1 ms
5 ms

10 ms
0

10

20

30

40

50

60

0.4 0.5 0.6

p
a

ck
e
ts

time in seconds

arrivals
1 ms
5 ms

10 ms

Since we are sampling the queue size, the samples can be taken less frequently than the MTU-time
of the output link, a particularly useful attribute for high-speed links. As aliasing can result when the
sampling intervals are fixed, we recommend that an average sampling interval be picked and a suitable
random algorithm be picked. For more discussion of random sampling see the discussion in [9]. In our
simulations didn’t see value of this, so didn’t take up simulation time on it, but should be looked for in “real
life.” In practice, sampling at several MTU-times is a bad idea for bandwidths less than 10 Mbps. Probably
better to sample at less than an MTU time. Our guide would be 1 ms samples. Used 4 ms for T1s. Probably
suggest using something on the order of an “average packet time” for bandwidths less than 10 Mbps.

2.2 Smoothing the input signal
Next we consider how best to smooth this input signal. This filtered value is the input to the control law and
must indicate a building or draining queue so that the controller can take action, but arrival bursts that can
be cleared by the output link without resulting in a queue of packets that persists ought to be smoothed.
For example, if the traffic load is a well-behaved TCP in steady state (after slow-start), the filtered signal
should show the single packet per round trip time increase in the queue size. That is, the smoother should
ignore all bursts that the queue can clear in an RTT while finding the queue length that has persisted over
the RTT. Then it is easy to see that for a TCP in steady state a filter could smooth over a round-trip time.

The majority of TCP connections in the Internet never reach TCP steady state and thus are more volatile
(during slow-start). This suggests a smoother must capture shorter-term variations than a round-trip time
and that it must be somewhat robust to variations in RTT. Further, since traffic is generally more volatile
than a TCP in steady state, permitting a burst of a pipesize every RTT could result in carrying rather
large persistent queues. In addition, the round-trip time for connections through a link is generally unknown
and varies between individual connections sharing the same bottleneck link. Further, traffic mixes are much
more arbitrary than multiplexing small numbers of infinite FTPs and are not known apriori. Although one
approach to controlling queues might be to infer traffic mix from the filtered monitor signal, this is a very
complex approach and recall that what we really need to do with our control law is to find an appropriate
operating point based on the monitored signal.

By persistent queue, we mean that level of packets that does not get cleared in the time period of interest
rather than the arithmetic mean of the bursts over that time. To make this clear, consider a queue to which
a burst of packets arrives once every T, but which completely clears from the queue just before the arrival
of the next burst. The mean value of the queue occupancy is half the burst size, but the persistent queue is
zero. Similarly, if the queue size never completely empties, but drops to a minimum of a single packet, we’d
like the filtered value to reflect that. If the queue size were only increasing, then the average value over the
past interval T might have some value, but it misses the draining queue.

3



In [1], the smoother employed is an exponential weighted moving average (EWMA), or a low-pass filter
(LPF), allowing for efficient implementations as in [8]. [1] uses a filter gain of 0.002 (called queue weight in
[1]).The EWMA equation is:

Fk = (1� g) ⇤ Fk�1 + g ⇤Qk

where g is the gain of the filter, less than or equal to 1, Fk is the filtered queue size at sample time Qk,
and is the sampled queue size at sample time k. Making no assumption on arrival bandwidth (i.e., packets
can arrive arbitrarily fast), we explore filter behavior analytically. A simple case is when there is some
constant queue size that persists; for example, the queue reaches a level of C packets and thereafter for
every departure there is an arrival to take its place. Using the unit step response of the filter, the filtered
value after n samples have been taken is:

Fk = 1� (1� g)n

which we can solve for the 90% value N, that is the number of samples to get reach 90% of the persistent
queue as represented by the step input.

N =
ln 0.1

ln(1� g)
= � 2.3

ln(1� g)

Dividing n by S gives the number of round-trip times. Sampling the queue at intervals equal to the
time to send an MTU-sized packet at the link bandwidth, implies that S = P . Setting g to 1/P, the 90%
response level is reached in a little over 2 round trip times. If the actual round-trip time is twice as long as
the assumed value, then it will take about a round-trip time to respond. Setting g larger permits a closer
tracking of the building queue, but at the risk of following transients we’d like to ignore. Consider a T1 link
on a path with a 100 ms round-trip time and thus P = 13, compare N for a gain of 0.0625, a value very
close to 1/P, to the gain value of 0.002 recommended in [1]. A gain of 0.0625 yields 36 samples or 2.7 round
trip times to reach the 90% level and a gain of 0.002 yields N = 1,150. For a 1.5 Mbps link and 1500 byte
packets, that’s over 90 round trip times; for 512 byte packets, more than 30 round trip times, a filter that
responds too slowly.

The filter must also handle the downward fluctuations in queue size properly and track the persistent
queue. A queue that is empty at least once every round trip time should result in a filtered queue size of
zero. The lagging properties of the LPF make this impossible, thus a different filter is required when the
monitored signal shows that queue size is decreasing. One way to accomplish this and to respond more
quickly to a draining queue is to set the filtered value to the queue sample when the latter is smaller than
the former. This is equivalent to changing the filter gain to 1.0 when Qk < Fk�1. Then we can write:

Fk = Fk�1 + g ⇤ (Qk � Fk�1);Qk > Fk�1

Fk = Qk;Qk  Fk�1

If we chose the gain to be the inverse of the number of queue samples in a round-trip time, the filter will
average over a round-trip time and approximate the mean over the round-trip time. If the average sample
interval is the transmission time of an MTU, this gain should be the inverse of the pipesize in MTU-sized
packets, 1/P. More generally, if we sample the queue S times in a round-trip time, our filter gain should be
on the order of 1/S. So we chose RTT/sampling_interval rounded to next higher power of 2, but 2x for bw
of 10M and up and 4x otherwise. Need fast response. Believe real answer is a better filter.

First, look at artificial pattern. A burst of 83 packets arrives each 100 ms. The departure rate is 1.2 ms
(an MTU time at 10 Mbps) and the arrival rate is twice as fast, 0.6ms per packet. Use a 93 EWMA (with
interpolation after idle times). Its interpolation acts as though there were that number of zeros. The RL
filter uses a gain of 1/S (rounded to next lower power of 2) or 0.015625. For comparison, we show sample
intervals of 1.2 ms and 10 ms.

4



0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4

p
a
ck

e
ts

time in seconds

93 ewma
RL mtu

RL 10ms

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

p
a
ck

e
ts

time in seconds

93 ewma
RL mtu

RL 10ms

The RL filters track the queue better, though can see that minor variations happen with differences in
where arrivals and departures fall relative to sample times. The 93 filter has a slow gain which is evident
here. However, the overall trend is upward. It is approaching the average queue, or a value of 21 packets. A
smaller gain will make this happen faster. Next we change the arrival rate to 0.1 ms.

Note that the EWMA keeps increasing. Reason is that the time constant is so long due to the small gain
that even 80 averaged in idles ((1-g)**80) is about 0.85, so that the peak value of 6.0 goes to 5.1 and then
ramps up. The second shows different ways of sampling. Also tried sampling at 10 ms intervals with little
difference.

2.3 Filters in action
Next we show filters in action on portions of some simulation traffic traces through drop tail queues. Recall
that when the instantaneous queue is determined from packet arrivals alone it will differ some from the
packet queue computed at sample times. The former will tend to miss departures and thus may be a bit
higher though they are very close for these examples. For uniformity, we use the packet arrival inupt for
both. The figure shows packet queue, the 93 ewma filtering, and the RL (red light) filter. Figure a shows a
1.5 Mbps link with three “infinite length” TCPs through it. The start up phase of the three is included and a
20 second period (200 round trip times) is shown. RL tracks the queue quite closely, nearly indistinguishable
at this time scale. Though there may be a temptation to chose the very smooth looking 93 filter, note that
it would indicate a large queue for packet arriving to a relatively small queue during several time periods,
for example just before 51 seconds. For the 10 Mbps bottleneck of figure b, the gain of 0.002 tracks its five
“infinite” TCPs somewhat closer. Still the lag is quite apparent.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

p
a
ck

e
ts

time in seconds

queue
ewma

rl

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

p
a
ck

e
ts

time in seconds

queue
ewma

rl

Next consider a varied traffic pattern (mix of ftps and webs) through a 1.5 Mbps link:

5



0

5

10

15

20

25

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

p
a
ck

e
ts

time in seconds

queue
ewma

rl

Notice there are several seconds where the ewma records a value with a high drop rate when the actual
queue is low. For varied mix through a 10 Mbps link, we show a 10 second period as well as zooming into a
one second (or 10 round-trip time) period.

0

20

40

60

80

100

120

140

160

55 56 57 58 59 60 61 62 63 64 65

p
a
ck

e
ts

time in seconds

queue
ewma

rl

0

20

40

60

80

100

120

140

160

56.6 56.7 56.8 56.9 57 57.1 57.2 57.3 57.4

p
a
ck

e
ts

time in seconds

queue
ewma

rl

Looks smooth, but note several seconds of lag.

3 Putting it to work: results
In the previous sections, we explained how a regulator for internet traffic should work and developed a
procedure. The difficulty in implementation is covering the wide range of adaptive and non-adaptive traffic of
the internet. We simulated a range of operating conditions and traffic mixes in order to gain an understanding
of RED and parameter setting. RED-light (RL) parameters are set as discussed in the previous section. Our
aim has been to explore the tradeoffs with changing parameters and the robustness of our algorithm.

We show performance against the RED control law proposed in 1993 (93) and parameters recommended
for RED in [1] and notes [7] (93g) from March, 2000. We set maxp, the value that determines the slope of
the drop curve (93’s control law), at 0.1 as recommended in [7] and the 93 “gentle” curve continues linearly
to a probability of 1.0 as the average queue gets close to the maximum buffer size. 2 Though the 93
RED parameters were originally not tied to pipesize in anyway, the 2000 notes suggest a minthsetting of
buffer size/12and a maxthof 3 ⇤minth. We’ve used those parameters and the ns-2 93 RED. The values of
minthand maxthare used as lower and upper bounds to persistent queue values, so our results explore their
efficacy.

Our work with RED has stretched over a number of years and in that time we’ve employed a number
of metrics for performance and design of queue management. Results presented here focus largely on how

2In 1997-8, Poduri and Nichols experimented with changes in the 93 RED control curve, including a “two-part” curve, but
this exhibited tuning problems at both ends. This work was done in the Bay Architecture Lab and written up only in internal
technical reports. 93g is related to this and has the same problems.

6



well the queue is controlled. Performance of each controller on queue size management is indicated with the
median queue size and the 90th percentile queue size for each run (shown in milliseconds or bytes in queue
times bandwidth of bottleneck link). To see how well the the queue management is tracking the queue, the
distribution of all the queues sizes over a run and the distribution of the queue sizes at drops. The queue size
samples are updated for each packet arrival or departure and idle queues are interpolated at MTU-times.
Good queue management should not drop arriving packets when the queue is empty or nearly so. For the
RL QMs, there should be few drops below the lower bound.

The simulated network is not quite a “dancehall dumbell”[] with clients on one side and servers on the
other. There are reverse-path clients and servers which are included in the traffic mix, but not in the
results presented here. RTTs are varied around 100 ms (from 75-125 ms). The TCP implementation used
an “ack every other packet” policy to mirror the most common TCP implementations. We look at three
bandwidths: T1 (1.5 Mbps), Ethernet (10 Mbps), and T3 (45 Mbps) and used the recommendations above
to set parameters. Buffer sizes are set to 2 ⇤ bw ⇤ d for links of 10 Mbps and smaller and to only a single
bw ⇤ d above that.3 The table gives the exact values used (The RLB values are converted to MTU-sized
packets for comparison).

B 93 RLP RLB
1.5 Mbps 2.2 2 2
10 Mbps 13.8 8 8
45 Mbps 31.3 30 15

B 93 RLP RLB
1.5 Mbps 6.5 7.8 6.5
10 Mbps 41.5 42 29
45 Mbps 93.8 131 94

3.1 Queue regulation for FTPs
The original paper on RED used a traffic load of TCP connections in steady-state, a load that might be
created by long-lived FTPs. This traffic load is easy to analyze and a controller for a buffer that only carries
such a traffic load is easy to design. Unfortunately, though most of the traffic of the Internet uses the TCP
protocol, only about 10% of flows are at all long-lived (that is, even make it into TCP steady state). Still
this mythical traffic load, known as elephants, has been widely used to test and justify a range of possible
controllers. Though TCPs account for 60-90% of the bytes seen in backbone links, controlling elephants is
not sufficient as we shall see. Further, the links most likely to be bottlenecked in today’s Internet are more
likely to have a higher share of short, HTTP style transactions.

The elephant traffic load can be used as a way of understanding controller performance under ideal
conditions. In addition, we add another FTP-style traffic load which we term moose to exercise controller
tracking. Moose are FTPs that transfer a smaller file, thus each client goes through slow-start, steady state,
and closing of several TCP connections during a simulation. It is much more difficult to track the slow-start
phase than the steady state phase.

3.1.1 Elephant herds

As we have seen, each drop has a lot of leverage for a single FTP. As more connections share a link,
the window size any connection can have open decreases until the connections are being regulated by the
timeouts, rather than TCP’s congestion avoidance. Thus we move from high to medium to low leverage per
drop as we add FTPs to the traffic mix. Simulations start with a single FTP through the link and runs of
increased numbers of FTPs are run till the link is quite saturated

1.5 Mpbs link. The bandwidth delay product is 12.5 for this link, so after 12 clients, there are more
FTPs than there is space for packets in the pipe. The figures show both median queue and the 90th percentile
queue in milliseconds vs the number of FTP clients. For the median, the drop tail (dt) queue results are
shown for interest, but not for the 90th percentile.

3At bandwidths of 100 Mbps and above, buffer sizes are frequently reduced further.

7



0

20

40

60

80

100

120

140

160

180

200

2 4 6 8 10 12 14 16 18 20

d
e

la
y 

(q
u

e
u

e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

20

30

40

50

60

70

80

90

100

110

2 4 6 8 10 12 14 16 18 20

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

Note that the 90th percentile delays for the RLs is better than the median of the 93 QMs. Since a major
goal of QM is to control delay, the 93s are less suitable for this. Further, there is an “overload effect” for
the 93 after the 12 client mark. What happens is that the majority of the drop are forced drops, above the
control region.

Since the controller for the 93s and for RLP looks only at the number of packets in the queue, the quality
of the controllers can be assessed to some degree by looking at the density of the sampled queue sizes. The
next figures are all the samples for all the loads for each QM. The upper bounds are indicated on the graphs
to see how well the controller kept the queue size in range. (It is a filtered version of the queue history that
is compared to the bound, not the instantaneous queue.) To compare RLB, whose controller is not based
on packet size, the size of the RLB queue in bytes is converted to MTU sized packets. The second graph
shows the number of packets in the queue when drops occur. No drops occur when there are fewer than 2
packets in the queue for any QM, with about 8% of the 93 drops at 2 packets and about 3% of the other
three QMs drops at 2 packets. The 93s don’t do a very good job of keeping the queue below maxth. For
93, the packet queue samples exceed maxth36% of the time; for 93g it is 44% of the time. For the RLs, the
number of samples above the UB is negligible, 0.003% for RLP and 0.01% for RLB. The maximum queue
sample recorded is 25 packets for 93, 21 packets for 93g, 10 packets for RLP and 9 packets for RLB.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25

p
e
rc

e
n
t 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth
RLB UB

RLP UB

93
93g

rlp
rlb

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

p
ro

p
o
rt

io
n

 o
f 
o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

The distribution of the queue and failure of the controller can also be noted by the proportion of packet
drops that are forced, that is outside the controlled region. The table shows the median across all the loads
and the range. There are no forced drops for the rls.

QM largest pq %pq above max med forced drops range of fds
93 25 36 61% 2-80%
93g 21 44 0.9% 0.6-11%
rlp 10 0.003 - -
rlb 9 0.01 - -

A 10 Mbps bottleneck

The larger pipesize gives a larger control range.

8



0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60

d
e

la
y 

(q
u

e
u

e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

5

15

25

35

45

55

65

75

85

10 20 30 40 50 60

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Number of FTPs

93
93g

rlp
rlb

The packet queue is more frequently below the maximum for the 93s, but a large percentage of the drops
occur above maxth.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

p
ro

p
o
rt

io
n
 o

f 
o

cc
u
ra

n
ce

number of packets in queue

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 20 30 40 50 60 70 80

p
ro

p
o
rt

io
n
 o

f 
o

cc
u
ra

n
ce

number of packets in queue at drop

93 maxth
RLP UB

RLB UB

93
93g

rlp
rlb

The table shows the largest packet queue, percentage of samples above the maximum or upper bound
and the percentage of drops made when the packet queue was below the minimum. A value of “0” indicates
a very small result, “-” indicates none found. For 93 more than 41% of samples were above the maximum
for the largest three loads and for 93g, more than 50% of samples were above maximum for the largest three
loads. Further, it is possible for an arriving packet to experience a delay considerably beyond the configured
maximum. This is not the case for the RL controllers.

QM largest packet queue %above max %drops below min range of fds
93 144 19 1.6 3-64%
93g 166 25 2.4 0-17%
rlp 64 1 - -
rlb 62 0 - -

A 45 Mbps bottleneck

The reduction of the buffer size to a single bandwidth delay product affects the minth and maxth of
the 93s. In turn, this leads to smaller delays, but more forced drops, that is drops that happen beyond the
control range.

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

d
e
la

y 
in

 m
ill

is
e
co

n
d
s

FTPs

dt
93

93g
rlp
rlb

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

9



The packet queue distribution for the 93s is much improved with samples above maxthonly 0.4% of the
time for 93 and 0.8% for 93g. RLP exceeds its upper bound 0.2% of the time and RLB 3% of the time.
Although RLB exceeds its bound the most often, these values are not large as can be see from the maximum
packet queue sizes of 166 for 93, 375 for 93g (vs 205 for RLP and 168 for RLB). The 93s do much more
dropping with very small queues, with 5% of 93’s drops when there is a queue size from just above 0 to 5
ms and 3% of 93g’s drops in the same range. For RLP, there are a negligible number of drops in the range
from 1 to 6 ms (none below) and for RLB, a negligible number of drops in the 3 to 6 ms range.

0

0.01

0.02

0.03

0 50 100 150 200

p
ro

p
o

rt
io

n
 o

f 
o

cc
u
ra

n
ce

number of packets in queue

93 maxth

RLP UB
RLB UB

93
93g

rlp
rlb

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250

p
ro

p
o

rt
io

n
 o

f 
o

cc
u
ra

n
ce

number of packets in queue at drop

RLP UB

93
93g

rlp
rlb

QM largest pq %above max drops below min range fds
93 166 0.4% 1.9% 4-98%
93g 375 0.8% 1.8% 0-42%
rlp 205 0.2% 0.3% -
rlb 168 3% 0.2% -

Fairness, forced drops and other interesting stuff

The topic of “fairness” is sometimes brought up with RED. This can only be applied meaningfully where
the traffic load is rather uniform, as for elephants. It is quite tedious to look at such measures and we have
found reasonable fairness across all schemes, including DT (though sometimes an outlier or two). Back to
controller stuff, we’d like our controller to actually come into play most of the time (unless there is negligible
queue). So, “forced drops” which indicate those that occur outside of the control range are to be avoided.
RLs do an excellent job of this and 93g is better than 93 due to its increased range. The 93 QM is frequently
out of the control range (this also indicates that the 93g is dropping on the steep part of its control law curve
an equivalent amount of time).

insert table of values?

3.1.2 Moose in the fields

Long-lived FTPs are very predictable and such herds of elephants (very long time in steady state compared
to observation time of interest) rarely occur in real networks. Moose are FTPs that have time to get through
slow start to steady state and to close in a fraction of the simulation time. Shorter transfers means more
start up phases. It is also unusual for network traffic to consist soley of packs of moose, but the varying
traffic patterns puts more realistic stress on queue management schemes. For T1 median delays, the median
delays mirror those of the elephants, but the variability in queue delays has grown.

10



0

20

40

60

80

100

120

140

160

180

200

2 4 6 8 10 12 14 16 18 20

d
e

la
y 

(q
u

e
u

e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

5

15

25

35

45

55

65

75

85

10 20 30 40 50 60

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Number of FTPs

93
93g

rlp
rlb

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

p
e
rc

e
n
t 

o
cc

u
ra

n
ce

number of packets in queue

93 maxth
RLB UB

RLP UB

93
93g

rlp
rlb

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

p
ro

p
o
rt

io
n

 o
f 

o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

The results with packet queue occupancies are also similar, with the “upper bound” for the 93s being a
maximum only in a very loose sense. Although 95% of the time the queues are less than a pipesize of packets,
there are times they grow to the maximum, 26 packets. This is not a good situation since the controlled
queue should remain below the pipesize. The RLP queue does grow to 14, but is below a pipesize 99.99% of
the time and the RLB never has more than 9 packets in its queue. 93 is usually doing forced drops: only one
load is at 6%, one at 34%, the rest are over 50%. 93g only has one load (single FTP) at 66% forced drops,
one load at 5% and the rest are 1%.

QM largest pq %q above max range of fds
93 26 36 6-79
93g 26 44 1-66
rlp 14 - -
rlb 9 0.1 -

Next we look at 10 Mbps bottlenecks:

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60

d
e
la

y 
(q

u
e
u
e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

5

15

25

35

45

55

65

75

85

10 20 30 40 50 60

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Number of FTPs

93
93g

rlp
rlb

11



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80

p
ro

p
o
rt

io
n

 o
f 

o
cc

u
ra

n
ce

number of packets in queue

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 20 30 40 50 60 70 80

p
ro

p
o
rt

io
n

 o
f 

o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth
RLP UBRLB UB

93
93g

rlp
rlb

In the single FTPs, although the two RED lights had roughly twice the drops, both got 99% utilization
for the single FTPs and the 93REDs got 97%. This is due to the drops in RED light being more effective.
In addition, the queue variation was smaller for RED light.

size of q at time of drop cdf

QM largest pq %drops below min range of fds
93 166 2.4 13-63
93g 166 2.8 0-19
rlp 60 0 -
rlb 62 0 -

Here there were a small number of RL drops when there were 7 packets in the queue (one below the
threshold and within the canceling range), the 93s had drops for queues as small as 2 packets.

For T3

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

d
e
la

y 
in

 m
ill

is
e
co

n
d
s

FTPs

dt
93

93g
rlp
rlb

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

9
0

th
 p

e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

Looking at the distribution of the queue, find that 61% of the sampled time the 93g was a zero queue
and 59% of the time the 93 was empty, 16% of the time for RLP (never for RLB, first point is 22 of the time
queue size of 1 packet). The largest queues seen for 93g was 375, for 93 was 322 for RLP was 310 and for
RLB was 250. Second plot is “zoomed in”; left off the zero points and outliers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth

RLP UB
RLB UB

93
93g

rlp
rlb

0

0.01

0.02

0.03

20 40 60 80 100 120 140 160 180 200

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth

RLP UB
RLB UB

93
93g

rlp
rlb

12



0

0.01

0.02

0.03

0.04

0 50 100 150 200 250 300 350

p
ro

p
o
rt

io
n

 o
f 

o
cc

u
ra

n
ce

number of packets in queue at drop

RLP UB

93
93g

rlp
rlb

QM largest pq %q above max %drops below min range of fds
93 322 5 2.4 24-93
93g 375 4 2.8 0-60
rlp 310 4 0 -
rlb 250 7 0 -

3.2 Web mice underfoot
If the congestion is due to web traffic, a SYN drop has the highest leverage (gives the highest medium term
bandwidth reduction) since it will postpone all traffic on the connection for 6 seconds. Dropping any other
packet will only delay a portion of the traffic for 100-500ms. An ack drop has the lowest leverage (since acks
are cumulative) but ack-dropping is a low probability event since paths rarely get congested with acks (the
forward or data path almost always congests first) and, in mixed ack and data traffic, the ack packet density
tends to be at most half the data packet density (since the most common receiver ack policy is at most ack
every other packet).

In some ways this kind of HTTP 1.0 represents a “worst case” for queue management in that the queue
sizes can change quickly. On the other hand, it is long-lived TCPs that push up a buffer size, as can be seen
clearly from drop-tail results for ftps, above.

Results of experiments with multiple web connections though a T1. The results show that it’s much
more difficult to control the persistent queue for bursty traffic like web accesses although RED light does
still manage to run without full buffers. Further we note that the web model we use is quite pessimistic in
a network traffic sense. We use a model that has three simultaneous TCP connections opened for “in- line”
transfers. Queues are controlled better if this is not permitted or only represents part of the traffic mix.

0
10
20
30
40
50
60
70
80
90

100
110
120
130

2 4 6 8 10 12

d
e
la

y 
(q

u
e
u
e
) 

in
 m

ill
is

e
co

n
d
s

Load Multiplier (x10)

dt
93

93g
rlp
rlb

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

13



0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

p
e
rc

e
n
t 

o
cc

u
ra

n
ce

number of packets in queue

93 maxth
RLB UB

RLP UB
93

93g
rlp
rlb

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

p
ro

p
o
rt

io
n

 o
f 

o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

QM largest pq %pq above max range of fds
93 26 17 14-72
93g 26 19 3-7
rlp 19 2 -
rlb 11 3 -

There were no drops with fewer than 2 packets in the queue.
Web connections through a 10 Mbps link congest the link for number of clients at 150 and up. Although

we repeated these experiments with the three sampling schemes (random sampling with a 7 ms average,
fixed sampling at 7 ms intervals and fixed sampling at MTU or 1.2 ms intervals), there was no significant
difference between the results. We report only the MTU sampled results. Again, the web traffic is more
demanding of our regulator than the FTPs, but roughly half the queue is available for traffic bursts even
at congested levels and note that the rate of increase of the median slows. We use a web-browsing client
model that opens three simultaneous connections after the response is received from the initial (or primary)
URL ([11] has more discussion of this model). This makes for a quite bursty traffic pattern which is greatly
mitigated by going to only two simultaneous in-line connections.

10 Mbps medians

0

20

40

60

80

100

2 4 6 8 10 12 14

d
e
la

y 
(q

u
e
u
e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14

9
0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

Also the pq cdf(truncating dt) and the delay cdf

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth

RLB UB
RLP UB

93
93g

rlp
rlb

0

0.01

0.02

0.03

0.04

0.05

0.06

20 40 60 80 100

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth
RLP UBRLB UB 93

93g
rlp
rlb

14



range

QM largest pq %pq above max range of fds
93 75 4 2-78
93g 82 4 0-1
rlp 51 - -
rlb 46 0.6 -

The 93 has a lot of forced drops, the largest 4 loads being above 60% forced, and the load value of 6
having 44% forced drops. Most of the 93g runs have no forced drops.

How does 93 RED do? First look at the results where maxp = 0.1, as recommended in [7]. For uncongested
or less congested cases, the control is similar to that of RED light, though the drops happen, in general, at
a slighly lower queue size in 93 RED than for RED light. Once the link gets congested, though, the 93 RED
has a more difficult time regulating the link: the median queue size grows toward the top of the controlled
range. Many of the drops that occur are at the top of the controlled range.

3.3 Moose and mice dance
In this section, we employ a traffic load created by a mixture of HTTP clients and FTP clients. Since the
results of sections 5.1 and 5.2 give us a good picture of what happens in extreme overloads, we explore a
more intermediate region. For each bandwidth, we used the number of web clients that yielded about 50%
and about 85% utilization in section 5.2 and added first one FTP, then two FTPs. We looked at several
measures of overall performance including page completions, rough fairness, bytes transferred, median queue
size and report the most salient here.

Median q

0
10
20
30
40
50
60
70
80
90

100
110
120
130

2 3 4 5 6 7 8 9 10

d
e
la

y 
(q

u
e
u
e
) 

in
 m

ill
is

e
co

n
d
s

Load Multiplier (x10)

dt
93

93g
rlp
rlb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

p
e
rc

e
n
t 
o

cc
u
ra

n
ce

queue size in milliseconds

RLB LB RLB UB

dt
93

93g
rlp
rlb

For T1, packet queues:

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

p
e
rc

e
n
t 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth
RLB UB

RLP UB

93
93g

rlp
rlb

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth

RLB UB

RLP UB

93
93g

rlp
rlb

For stampedes as for mice, good to look at time, not just packet queue.

15



QM largest pq %pq above max %drops at pq=2 range of fds
93 26 33 16 35-78%
93g 26 46 12 1-18%
rlp 16 1.7 5 -
rlb 11 3 2 -

For 93, all runs except 2 had a majority of drops as forced. For q above max, runs 4-10 were above the
max 46% of the time or more. For 93g, runs 4-10 were above the max more than half the time. For drop
tail queues, the FTPs tend to push out the Web transactions. This can be seen by computing the difference
between the share of drops received by web traffic and the share of packets sent by web traffic. For DT, this
is always a positive value, ranging from 6% at load 2 to 13% at load 10. For all the REDs, this is bounded
by the absolute value of 3% (more often slightly negative for the rls and 93). (RLP has the least variation
from zero.)

We found that all schemes were relatively fair between the two FTP clients. Web traffic got a nearly
identical overall share of the link in both RED-managed queues. In general, web packets got a slightly lesser
share of the link for the droptail queue with a single FTP while drop tail with two FTPs clearly gave the
webs a lesser share of the link than the RED-managed queues. For example, with drop tail, web packets got
55% of the FTP packet share for ISDN, 75% of the FTP packet share for T1 and E10. This supports our
observation that in drop tail queueus, the FTPs fill the queue and HTTP packets often can’t fit in the small
remaining space and are dropped. This is also supported by examining the HTTP packets’ share of the
drops divided by the HTTP packets’s share of all packet successfully sent. For most of the RED-managed
experiments, this is between 1.0-1.1, while in the drop tail queue experiments, the ratio varies from 1.1 to
2.4! Interestingly, for the E10 link, sometimes HTTP sees less than its share of drops.

0

20

40

60

80

100

2 4 6 8 10 12 14

d
e
la

y 
(q

u
e
u
e
) 

in
 m

ill
is

e
co

n
d
s

Number of FTPs

dt
93

93g
rlp
rlb

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14

9
0

th
 p

e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

The packet q pdf

0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70 80

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue

93 maxth

RLB UB

RLP UB

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 40 60 80 100

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue at drop

93 maxth
RLP UB

RLB UB

93
93g

rlp
rlb

QM %q above max largest pq %drops below min lrange of fds
93 29% 166 12.5% 23-77%
93g 39% 166 7% 0-10%
RLP 1% 61 0.3% -
RLB 3% 46 0 -

16



There are no drops by rls below 7 packets in the queue. (7 is the cancel thresh) and the number of drops
at 7 is negligible.

The advantages of using RED-managed queues are very clear from this data, but the superiority of RED
light over 93RED is also clear. The RED light utilzation is always equal or greater than the 93RED values.
In all experiments but one, the RED light drop rate is lower. The total web pages transfered is always
greatest for RED light. Although the 93RED median queue is lower than RED light we argue that, in light
of the other results, this represents overcontrolling of the queue. Furthermore, the difference never exceeds
12% of the total queue size and is usually less. On the other hand, we note that both RED-managed versions
are an improvement over drop tail.

For T3, median delays

5

10

15

20

25

30

35

40

45

50

8 10 12 14 16

d
e
la

y 
in

 m
ill

is
e

co
n

d
s

Load Multiplier

dt
93

93g
rlp
rlb

10

15

20

25

30

8 10 12 14 16
9

0
th

 p
e
rc

e
n
til

e
 d

e
la

y

Load Multiplier

93
93g

rlp
rlb

Here the 93’s perform better on delay since the parameters are tied to bandwidth.

0

0.01

0.02

0 50 100 150 200 250

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue

RLP UB

93
93g

rlp
rlb

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250

p
ro

p
o
rt

io
n
 o

f 
o
cc

u
ra

n
ce

number of packets in queue at drop

RLP UB

93
93g

rlp
rlb

QM %q above max largest pq %drops below min largest delay
93 16% 281 11% 18-85%
93g 24% 294 5.5% 0
RLP 11% 208 0.02% -
RLB 28% 159 0.001% -

3.4 An overall look at the data
Recall that we are looking for a controller that works well across a range of traffic loads and can be param-
eterized in a straightforward fashion.

We judge a controller by how well it controls the queue, measured in both time delay introduced and
size of the queue in packets. We also look at the cost of the control, here expressed by dividing the delay by
utilization (and leaving out the single FTP loads). We also want to look at the size of the queue when the
drops occur: does it seem to be controlling the queue or are the drops completely random or responding to
“old news”? That is, drops that happen when the queue is nearly empty. We also look at the “forced drops”,
that is, how often is it getting out of our target control range? Also look at the percent of single-spaced
drops, though this is expected to be higher for higher loads.

17



As we have seen, the cumulative distribution functions of the queue statistics are the most revealing. We
can combine all the cdfs for a particular queue managment on one plot to see how much they differ.

We can also plot all the medians for each scheme and the median values for these.

0

10

20

30

40

50

60

93 93g RLP RLB

m
e

d
ia

n
 d

e
la

y 
o
f 

e
a

ch
 r

u
n

 (
m

s)

Queue Managment Type

median
25th
75th

0

10

20

30

40

50

60

70

80

90

100

110

93 93g RLP RLB

9
0

th
 p

e
rc

e
n

til
e
 d

e
la

y 
o

f 
e
a

ch
 r

u
n

 (
m

s)

Queue Managment Type

median

It’s clear that the red-lights have a tighter range of medians and that the median of these is lower.
We can also look at a such a simple metric for cost, the related function:

0

10

20

30

40

50

60

70

93 93g RLP RLB

m
e
d
ia

n
 d

e
la

y 
d
iv

id
e
d
 b

y 
u
til

iz
a
tio

n

Load Number

all costs
median for this qm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

93 93g RLP RLB

u
til

iz
a
tio

n
 d

iv
id

e
d

 b
y 

m
e
d
ia

n
 d

e
la

y

Queue Management Type

Also can look at the percentage of forced drops:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

93 93g RLP RLB

%
 f
o
rc

e
d
 d

ro
p
s

Queue Management Type

median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

93 93g RLP RLB

fr
a
ct

io
n
 o

f 
b
a
ck

-t
o
-b

a
ck

 d
ro

p
s

Queue Management Type

median
90th

3.5 When the round-trip delay departs from the parameterized value
In section 3, we introduced some discussion of what happens when the RTT differs from the assumed 100
ms value. We explore this further by setting parameters using the “canonical” 100 ms value and varying
the RTTs of the connections using the bottleneck. We first experimented with increasing numbers of FTPs

18



through a 10 Mbps bottleneck where all connections have the same RTT which we varied from 25 ms to 500
ms. When RTTs are longer than 100 ms, the link utilization at low degrees of multiplexing is decreased.
For RTTs up to about 300 ms, the median queue is maintained in roughly the same range as the 100 RTT
connections, but deviations are greater. At an RTT of 500, the utilizations are lower and the persistent
queue is quite low, though the deviations are large. This can be important for long-delay paths since a
large queue adds more delay to an already long delay path. The short RTTs are of more concern since their
connections are ramping up more quickly than our “canonical” connection. Does a RED light regulator still
control the persistent queue for such connections? Results for the 25 ms and 50 ms round trip times indicate
that RED light controls the persistent queue quite well. (The small RTT experiments all run at about 99%
link utilization.)

Another issue with varying RTTs is whether the RED light regulator exacerbates the well-known RTT
unfairness. That is, for connections of different RTTs sharing a bottleneck, those of smaller RTT generally
get a larger share of the link bandwidth. To test this, small numbers of FTPs, each with a different RTT,
were multiplexed through a 1.5 Mbps link. We experimented with 8, 5, and 2 flows. The median queue sizes
for all experiments remained between 9 and 11 with deviations of 1.5 to 2 packets. We recorded the share
of the link each connection got as well as that connection’s share of the total drops. The greatest difference
was seen when two flows share the link. At slightly higher degrees of multiplexing, the relative shares of the
link still differ, but the relationship to RTT is less pronounced. Flows appear to get a share of the drops
roughly equal to their share of the link, as desired.

3.6 When the output link bandwidth varies from the parameterized value
Queueing and scheduling schemes may cause variation in bandwidth.

3.7 Summary of results
In the results we saw that the 93RED algorithm could be “tuned” by changing its control range and setting
maxp to 1.0 to give “reasonable” performance, but that the performance does not seem to hold up as well over
general traffic mixes as our RED light. Further, the setting of parameters appears to be much less robust
than for RED light. However, the results and analysis presented in this paper should improve understanding
and tuning of 93RED schemes, if it is necessary.

Note that for REDlight it’s a simple matter to adjust parameters for “more queue” (that is, more delay)
and higher utilization by increasing the threshold. The upper bound makes much less difference. In general,
it’s difficult to get “perfect” parameters for T1 rates. At T3 and above, the threshold should be dropped if
shorter queues are desired.

4 Conclusions and Future Work
We’ve presented a robust RED light algorithm which can be parametrized only by the output link bandwidth
and admits a simple, efficient implementation at all link speeds. This algorithm shows promise across a range
of bandwidths and traffic types.

Although we carried out RED light experiments for two sampling schemes, random samples at 7 ms
average and fixed samples at 1.2 ms (MTU-time), the link utilization and drop rates showed no significant
differences between the two sampling schemes. There still may be some sample aliasing effects that would
affect the fairness, but we leave this for further investigation.

Several items are on our list to be investigated in the future. One is further investigation of sampling, its
effects on the control of the queue and efficient sampler implementations. Another is to develop a penalty
box algorithm we believe will work well with RED light. We’d like to investigate parameter setting when
there are multiple output queues (as for differentiated services), each running a RED. We’d also like to
see how the use of TCP-SACK affects results, though it should lead to improved performance for the end
systems.

19



5 References
[1] S. Floyd and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM
Transactions on Networking, August 1993.

[2] R. Braden et al., "Recommendations on Queue Management and Congestion Avoidance in the Inter-
net", RFC2309, April 1998.

[3] V. Jacobson, "Notes on Using RED for Queue Management and Congestion Avoidance", talk at
NANOG 13, ftp://ftp.ee.lbl.gov/talks/vj-nanog-red.pdf, see also http:// www.nanog.org/mtg-9806/agen0698.html,
Dearborn, MI, June, 1998.

[4] Sean Doran, RED Experience and Differentiated Queueing, talk at NANOG 13, http:// adm.ebone.net/⇠smd/red-1.html,
see also http://www.nanog.org/mtg-9806/agen0698.html, Dearborn, MI, June, 1998.

[5] C. Villamizar, and C. Song, "High Performance TCP in ANSNET", Computer Communications
Review, V. 24 N. 5, October 1994, pp. 45-60

[6] http://www-nrg.ee.lbl.gov/floyd/red.html
[7] S. Floyd, "RED: Discussions of Setting Parameters" and “Recommendation on Using the ’Gentle_’

Variant of RED”, November 1997 and March 3, 2000, accessible at http://www.aciri.org/floyd/red.html
[8] V. Jacobson, "Congestion Avoidance and Control", Sigcomm 1988
[9] V. Paxson et. al., "Framework for IP Performance Metrics", RFC 2330, May 1998, p. 21
[10] The simulator ns-2, available at: http://www-mash.cs.berkeley.edu/ns/ and see also the "contributed

models" section.
[11] K. Nichols, “Improving Network Simulation with Feedback”, Proceedings of LCN ’98, October, 1998.
[12] K. Poduri and K. Nichols, "Simulation Studies of Increased Initial TCP Window Size", RFC 2415,

September, 1998.
[13] V. Jacobson, reported in “Minutes of the Performance Working Group”, Proceedings of teh Cocoa

Beach Internet Engineering Task Force, Reston, VA, Corporation for National Research Initiatives, April,
1989.

[14] A. Mankin, “Random Drop Congestion Control”, Proceedings of SIGCOMM ’90, September 24-27,
1990.

20


